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The Thermodynamics of Vapor-Liquid Equilibrium for Dummies

1. Introduction
Consider we have a multi-component system at vapor-liquid equilibrium. The following

three conditions define thermodynamic equilibrium. First, we have thermal equilibrium,
equating the temperature in the two phases,

TV =TL (1)
Second, we have mechanical equilibrium, equating the pressure in the two phases,
PV -pt. @)

Third, we have chemical equilibrium, equating the chemical species of each comonent in the two
phases,

ug = ul& fora=1to Nq, 3)

where N¢ is the number of components in the mixture.

II. Equilibrium Expression in terms of Gibbs free energies

For the practical evaluation of equation (3), one typically rewrites the equations in terms
of fugacities. Let us derive this alternative statement. The chemical potential of component o in

phase ¢, ug , 1s defined as

NG

¢ =
a

n 4

oNg
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where Q(b is the molar Gibbs free energy of the mixture of phase ¢, N is the total number of

moles in phase ¢, and N$ is the number of moles of component a in phase ¢. As a result of this
definition, the molar Gibbs free energy of the mixture is given by

N
G =3 xqud (5)
1

o

o
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One typically proceeds by writing the molar Gibbs free energy of the mixture as a sum of an
ideal mixture (IM) component and an excess (XS) component,

Gt =gtM ¢S (6)

where the excess term, by definition, includes everything that isn’t included in the ideal mixture.
The molar Gibbs free energy of an ideal mixture is defined as

NC
G¢M _RT in’tln(xg). (7)
a=1
As a consequence of this definition, the excess molar Gibbs free energy of a mixture must be
Ng¢
G gl _g*M_G?_RT ng|n(x3). )
a=1

The definitions of the mixture properties also defined the partial molar Gibbs free energy of an
ideal mixture as

e =gt + RTln(xg), )

—a

where Qg is the molar Gibbs free energy of componenat o in the pure state. The partial molar
excess Gibbs free energy of a mixture is

Go"® =t G —RTln(xg). (10)

As a result of equations (9) and (10), we see that we have an expression for the chemical
potential in terms of ideal mixture and excess terms, which is analogous to the expression for the
molar Gibbs free energy of the mixture in equation (6), namely

wb =GEM L G _ gt RTINS )+ GO S, (1)
So, we can rewrite the statement of chemical equilibrium, equation (3), as

—V, XS
+Gq

GV +RT|n(x}{) -Gt +RT|n(xg)+ o™ fora=1toNe.  (12)

This expression, while useful in the purposes of making a continuous derivation, is not
practically employed.
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1II. Equilibrium Expression in terms of fugacities

In phase ¢ of the pure component o, we define a fugacity, f(‘l’ , as

o _glC

G —
fO =Pexp =4 =% , 13
¢ xp[ = ] (13)

where QIO? is the molar Gibbs free energy of pure alpha as an ideal gas, where the pressure is

equal to zero. When we have an equation of state, the evaluation of the pure component fugacity
involves evaluating the following integral

P

£ = Pexp{%j(yg(P)ngPJ . (14)
0

We can also define a fugacity coefficient as

¢
¢ _Ta 15
(POL P b ( )
For single-component vapor-liquid equilibrium, equation (12) becomes
\Y L
G, =G, (16)

By performing the same operations on both sides of equation (16), we could also write this as

\ IG L IG
G, -G G, -G
Pexp{%l =P exp{%} . (17)

We see that equation (17) contains the fugacities, so that an alternative expression for single
component vapor-liquid equilibrium is

£/ =L . (18)

Equation (18) is frequently used for the calculation of single-component vapor liquid
equilibrium.

For a given T, one guesses P. One evaluates the integral in equation (14) for both
phases. If the two fugacities are equal, one guessed a good P. Otherwise, one needs to guess a
new value of P following some methodical iterative procedure. One can also do this given P
and iterating over T.
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We are interested in multi-component vapor-liquid equilibrium. In the multi-component

case, the fugacity of component o in a mixture in phase ¢, ]:2 , 1s defined as

—¢,IGM —$,XS

G
& — x?Pexp| =& ) 19
o P exp RT (19)

£ = xtPexp| Mo~

where IGM indicates an ideal gas mixture. When we have an equation of state, the evaluation of
the pure component fugacity involves evaluating the following integral

P
b 1 (0 oy ohIGM
fo _Pexp{RTg(Va(P) b (P)de] : (20)

We can also define a fugacity coefficient in a mixture as

B =0
¢ _Tfo @1)
xi’LP

Using equation (9), we have a definition for the partial molar Gibbs free energy of component a
in an ideal gas mixture

éqo){lGM = Q%'G + RTIn(de’L) (22)

it can be shown by direct comparison of equation (19) and equation (3) that another expression
for the chemial equilibrium condition is that the mixture fugacities are equal in each phase for
each component

f}f = fl& fora =1 to N, (23)

Equation (23) is used for the calculation of multi-component vapor liquid equilibrium, where
equations of state are available for both the liquid and vapor phases.

To work this problem one needs to be given two of the four quantities, T, P, the
composition of the vapor phase, or the composition of the liquid phase. For example if we know
the temperature and liquid composition, we must guess the pressure and vapor composition. We
evaluate the integrals in equation (20). If the fugaciitiess are equal, one guessed a good P and

{xg } Otherwise, one needs to guess new values, following some methodical iterative
procedure.
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1V. Equilibrium Expression in terms of activities

The problem with fugacities is frequently we do not have a good equation of state for the
liquid mixture. Thus we are unable to evaluate the right-hand side of equation (23). Therefore,
we introduce the concept of the activity. The activity of component o in a mixture in phase ¢,
aﬂ; , 1s defined as the ratio of the fugacity of component a in a mixture to that in the pure
component, at the same T and P.

];d)
ad =% (24)
fe
We also can define an acitivity coefficient, yi’t ,
ad =x4y¢ (25)

Models for activity coefficient exist. With such a model, one can compute the right-hand side of
equation (23).

fo = xby05d (26)

Note that one still requires the equation of state for the pure component liquid.
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V. An Example
system: two component vapor-liquid equilibrium.
given: temperature and liquid composition

unknown: pressure and vapor composition

V.A. pure component vapor phase

V.A.1. Peng-Robinson equation of state for component 3

ag(T
V=bg  V(v+bg) +bglv-by)
R2T2
ag(T)=0.45724—%L o (T) (28)
c.p
2
T
OLB(T)I 1+KB 1- (29)
Tep
kg =0.37464 +1.54226 g — 0.269920)[32 (30)
where g is the acentricity factor of component 3.
RT, B
bg =0.07780 ’ (31)
Pe.p

V.A.2. pure component fugacity, vapor phase. We don’t need this.

) v v e ) A zY +(1++2) B,,
.n(P](za vl e, A Ty &

where the compressibility is given as

\%
V. P
ZV:—OL 33
o = RT (33)
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a,P
A =_% 34
o = RT (34)
bP
By =2 35
o= RT (35)

V.B. mixture component vapor phase

V.B.1. Peng-Robinson equation of state with mixing rules

p_ RT Amix (T) (36)
V—=bmix  V(V+bnix) +bmix (¥ —bmix)
NgNe
amix(T) = z ZXQXB Vaauap (1—ka[3) (37)
a=1p=1

where kaB is the binary interaction parameter and is 0 for a=fB. If you don’t know it, assume it

1S zero.

Brmix = S
mix ~— zxaba (38)

a=1

V.B.2. component in mixture fugacity, vapor phase

%
in| |- Ba (zV 1)—|n(zV Bmix)

XXP Brix mix mix
" Ng ' i,
23 xY A (39)
§ \Y,
_ Anmix p=1 _ Bg In Zmix +(1+\/§) B mix
B...
2\/§Bmix Anmix nx Zr\r/1ix - (1 - \/E) Bix
where the compressibility is given as
Vv
A\ MmiXP (40)

mix —

RT
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a_. P

Amix = EI-F (41)
b . P

B - @

V.C. pure component liquid phase

V.C.1. Peng-Robinson equation of state for component 3

Same as for the pure component vapor phase. Equations (27) to (31).
V.C.2. pure component liquid phase fugacities

Same as equations (32) to (35) replacing V with L.

E ot ) ol s ) Ag Z|&+(1+\/§)Ba
In[PJ_(Za 1) In(Za Ba) 2\/§Ba In z'&+(1_\/§) - (43)

L
7h =2 (44)
V.D. mixture liquid phase
Use an activity coefficient model.
fo =xyLfL (26)

For example, the Wilson activity coefficient model for binary mixtures. (Note the rest of this
document is not limited to binary mixtures.) Only the Wilson model.

Agp Agg 45)

In(yl&)z —In(x'& +Aaﬁx}§)+ x}g 3 T C
Xa, +AaBXB XB +ABOLX0.



