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The Thermodynamics of Vapor-Liquid Equilibrium for Dummies 
 
 
I. Introduction 
 
 Consider we have a multi-component system at vapor-liquid equilibrium.  The following 
three conditions define thermodynamic equilibrium.  First, we have thermal equilibrium, 
equating the temperature in the two phases, 
 
 LV TT = .          (1) 
 
Second, we have mechanical equilibrium, equating the pressure in the two phases, 
 
 LV PP = .          (2) 
 
Third, we have chemical equilibrium, equating the chemical species of each comonent in the two 
phases, 
 
 LV

αα µ=µ   for α = 1 to Nc,       (3) 
 
where Nc is the number of components in the mixture. 
 
II.  Equilibrium Expression in terms of Gibbs free energies 
 
 For the practical evaluation of equation (3), one typically rewrites the equations in terms 
of fugacities.  Let us derive this alternative statement.  The chemical potential of component α in 
phase φ, φ

αµ , is defined as 
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where φG  is the molar Gibbs free energy of the mixture of phase φ, φN  is the total number of 

moles in phase φ, and φ
αN  is the number of moles of component α in phase φ.  As a result of this 

definition, the molar Gibbs free energy of the mixture is given by  
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One typically proceeds by writing the molar Gibbs free energy of the mixture as a sum of an 
ideal mixture (IM) component and an excess (XS) component,  
 
 XS,IM, GGG φφφ +=  ,        (6) 

 
where the excess term, by definition, includes everything that isn’t included in the ideal mixture.  
The molar Gibbs free energy of an ideal mixture is defined as 
 

 ( )φ
α

=α

φ
α

φ ∑≡ xlnxRTG
cN

1

IM, .        (7) 

 
As a consequence of this definition, the excess molar Gibbs free energy of a mixture must be 
 

 ( )φ
α

=α

φ
α

φφφφ ∑−=−= xlnxRTGGGG
cN

1

IM,XS, .     (8) 

 
The definitions of the mixture properties also defined the partial molar Gibbs free energy of an 
ideal mixture as 
 

 ( )φ
α

φ
α

φ
α +≡ xlnRTGG

IM,
,        (9) 

 
where φ

αG  is the molar Gibbs free energy of componenat α in the pure state.  The partial molar 
excess Gibbs free energy of a mixture is 
 

 ( )φ
α

φ
α

φ
α

φ
α −−µ≡ xlnRTGG XS,

.       (10) 
 
As a result of equations (9) and (10), we see that we have an expression for the chemical 
potential in terms of ideal mixture and excess terms, which is analogous to the expression for the 
molar Gibbs free energy of the mixture in equation (6), namely 
 

 ( ) XS,XS,IM, GxlnRTGGG φ
α

φ
α

φ
α

φ
α

φ
α

φ
α ++=+=µ .     (11) 

 
So, we can rewrite the statement of chemical equilibrium, equation (3), as  
 

 ( ) ( ) XS,LLLXS,VVV GxlnRTGGxlnRTG αααααα ++=++   for α = 1 to Nc. (12) 
 
This expression, while useful in the purposes of making a continuous derivation, is not 
practically employed. 
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III.  Equilibrium Expression in terms of fugacities 
 
 In phase φ of the pure component α, we define a fugacity, φ

αf , as  
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 ,        (13) 

 
where IGGα  is the molar Gibbs free energy of pure alpha as an ideal gas, where the pressure is 
equal to zero.  When we have an equation of state, the evaluation of the pure component fugacity 
involves evaluating the following integral 
 

 


















 −≡ ∫ φ

α
φ
α

P

0
dP

P
RT)P(V

RT
1expPf  .      (14) 

 
We can also define a fugacity coefficient as  
 

 
P
f φ
αφ

α ≡ϕ  ,          (15) 

 
For single-component vapor-liquid equilibrium, equation (12) becomes 
 
 LV GG αα =            (16) 
 
By performing the same operations on both sides of equation (16), we could also write this as 
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We see that equation (17) contains the fugacities, so that an alternative expression for single 
component vapor-liquid equilibrium is 
 
 LV ff αα =  .          (18) 
 
Equation (18) is frequently used for the calculation of single-component vapor liquid 
equilibrium. 
 For a given T, one guesses P.  One evaluates the integral in equation (14) for both 
phases.  If the two fugacities are equal, one guessed a good P.  Otherwise, one needs to guess a 
new value of P following some methodical iterative procedure.  One can also do this given P 
and iterating over T.
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 We are interested in multi-component vapor-liquid equilibrium.  In the multi-component 

case, the fugacity of component α in a mixture in phase φ, 
φ
αf , is defined as  
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where IGM indicates an ideal gas mixture.  When we have an equation of state, the evaluation of 
the pure component fugacity involves evaluating the following integral 
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We can also define a fugacity coefficient in a mixture as  
 

 
Px

f
φ
α

φ
αφ

α ≡ϕ  ,          (21) 

 
Using equation (9), we have a definition for the partial molar Gibbs free energy of component α 
in an ideal gas mixture 
 

 ( )φ
α

φ
α

φ
α +≡ xlnRTGG IG,IGM,

        (22) 
 
it can be shown by direct comparison of equation (19) and equation (3) that another expression 
for the chemial equilibrium condition is that the mixture fugacities are equal in each phase for 
each component 
 

 
LV ff αα =   for α = 1 to Nc,       (23) 

 
Equation (23) is used for the calculation of multi-component vapor liquid equilibrium, where 
equations of state are available for both the liquid and vapor phases. 
 To work this problem one needs to be given two of the four quantities, T, P, the 
composition of the vapor phase, or the composition of the liquid phase.  For example if we know 
the temperature and liquid composition, we must guess the pressure and vapor composition.  We 
evaluate the integrals in equation (20).  If the fugaciitiess are equal, one guessed a good P and 
{ }Vxα .  Otherwise, one needs to guess new values, following some methodical iterative 
procedure. 
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IV.  Equilibrium Expression in terms of activities 
 
 The problem with fugacities is frequently we do not have a good equation of state for the 
liquid mixture.  Thus we are unable to evaluate the right-hand side of equation (23).  Therefore, 
we introduce the concept of the activity.  The activity of component α in a mixture in phase φ, 

φ
αa , is defined as the ratio of the fugacity of component a in a mixture to that in the pure 

component, at the same T and P. 
 

 
φ
α
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αφ

α ≡
f
fa           (24) 

 
We also can define an acitivity coefficient, φ

αγ , 
 
 φ

α
φ
α

φ
α γ≡ xa           (25) 

 
Models for activity coefficient exist.  With such a model, one can compute the right-hand side of 
equation (23). 
 

 φ
α

φ
α

φ
α

φ
α γ≡ fxf           (26) 

 
Note that one still requires the equation of state for the pure component liquid. 
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V.  An Example 
 
system:  two component vapor-liquid equilibrium. 
given:  temperature and liquid composition 
unknown:  pressure and vapor composition 
 
V.A.  pure component vapor phase  
  
V.A.1.  Peng-Robinson equation of state for component β 
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 226992.054226.137464.0 βββ ω−ω+=κ      (30) 
 
where βω  is the acentricity factor of component β. 
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V.A.2.  pure component fugacity, vapor phase.  We don’t need this. 
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where the compressibility is given as  
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Z

V
V α
α =           (33) 
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RT

Pa
A α

α =           (34) 

 

 
RT

Pb
B α

α =           (35) 

 
V.B.  mixture component vapor phase  
  
V.B.1. Peng-Robinson equation of state with mixing rules 
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where αβk  is the binary interaction parameter and is 0 for α=β.  If you don’t know it, assume it 
is zero. 
 

 ∑
=α

αα=
cN

1

V
mix bxb          (38) 

 
V.B.2.  component in mixture fugacity, vapor phase 
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where the compressibility is given as  
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RT

Pa
A mix

mix =          (41) 

 

 
RT

Pb
B mix

mix =          (42) 

 
V.C.  pure component liquid phase  
  
V.C.1.  Peng-Robinson equation of state for component β 
 
 Same as for the pure component vapor phase.  Equations (27) to (31). 
  
V.C.2.  pure component liquid phase fugacities 
 
 Same as equations (32) to (35) replacing V with L. 
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V.D.  mixture liquid phase  
  
Use an activity coefficient model. 
 

 LLLL fxf αααα γ≡           (26) 
 
For example, the Wilson activity coefficient model for binary mixtures.  (Note the rest of this 
document is not limited to binary mixtures.)  Only the Wilson model. 
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