
ChE 301 Lecture Notes - D. Keffer, 5/29/98

1

Lecture 36,37,38 - Rootfinding in systems of equations
(A) Theory
(B) Problems
(C) MATLAB Applications

Text: Supplementary notes from Instructor

36.1 Why is it important to be able to find roots to systems of equations?

Up to this point, we have discussed how to find the solution to

• single non-linear equation (Newton Raphson Method)
• systems of linear equations (Linear Algebra)

However, frequently in chemical engineering, we need to find the solution to a system of
non-linear equations. This forces us to combine the Newton-Raphson method with Linear
Algebra. The technique we will discuss in this section is Multivariate Newton Raphson Method.

36.2 Multivariate Newton-Raphson - Theory

Recall that when we wanted to find the solution to a single non-linear equation of the form

0)x(f = (31.1)

The basis of the Newton-Raphson method lay in the fact that we can approximate the
derivative of)x(f numerically.

21

211
1 xx

)x(f)x(f
dx

)x(df)x(f
−
−≈=′ (31.2)

leading to the iterative formula

)x(f
)x(fxx
i

i
i1i ′−=+ (31.5)

Now consider the system of n non-linear equations and n unknowns.

ChE 301 Lecture Notes - D. Keffer, 5/29/98

2

()
()
()

()
() 0x,x,...x,x,xf

0x,x,...x,x,xf
...

0x,x,...x,x,xf
0x,x,...x,x,xf
0x,x,...x,x,xf

n1n321n

n1n3211n

n1n3213

n1n3212

n1n3211

=
=

=
=
=

−

−−

−

−

−

(36.1)

This is the most general form of the problems that face chemical engineers and encompass linear
equations (when all the functions, f , are linear) and single equations (when n = 1).

One technique used to solve this problem is called the multivariate Newton Raphson
Method (MNRM). The idea follows from the single-variable case. The basic idea again stems
from the fact that the total derivative of a function, jf , is

 2
2

j
1

1

j
j dx

x
f

dx
x
f

df 




∂
∂

+




∂
∂

= (36.2)

for the case of two variables or

 ∑
=






∂
∂

=
n

1i
i

i

j
j dx

x
f

df (36.3)

for the n variable case. We can discretize this expression and write:

{ }() { }() () ∑
=

−




∂
∂

=−
n

1i

)1(
i

)2(
i

i

j)1(
j

)2(
j xx

x
f

xfxf (36.4)

where the j is the index over functions, the i is the index over variables and the superscript in
parentheses stands for the iteration. Note that if we have only one variable (n=1), this reduces to
the Newton-Raphson method that we have already learned.

Now consider that we have n equations so that j = 1 to n. We have a system of equations
which we can write as:

{ }() { }() () ∑
=

−




∂
∂=−

n

1i

)1(
i

)2(
i

i

)1()2(xx
x
fxfxf (36.5)

ChE 301 Lecture Notes - D. Keffer, 5/29/98

3

Just as in the single variable case, we want our next iteration to take us to the root so we assume

that { }() 0xf)2(= . We can then write this system in matrix notation as:

)k()k()k(RxJ −=δ (36.6)

where)k(R is called the residual vector at the kth iteration and is defined as

{ }())k()k(xfR = (36.7)

where)k(J is called the Jacobian matrix at the kth iterationand is defined as

()














∂

∂
=)k(

i

)k(
j

i,j
)k(

x

f
J (36.8)

and where

)k()1k()k(xxx −=δ + (36.9)

so that the new guess for the x is

)k()k()1k(xxx δ+=+ (36.10)

The algorithm for solving the multivariate Newton-Raphson follows analogously from the single
variable NRM. The steps are as follows:

1. Make an initial guess for x
2. calculate the Jacobian and the Residual.
3. Solve equation 36.6
4. Calculate new x from equation 36.10
5. If the solution has not converged, loop back to step 2.

The multivariate Newton-Raphson Method suffers from the same short-comings as the
single-variable Newton-Raphson Method.

(1) You need a good initial guess.
(2) You don’t get quadratic convergence until you are close to the solution.
(3) If the partial derivatives are zero, the method blows up. If the partial derivatives are

close to zero, the method may not converge.

ChE 301 Lecture Notes - D. Keffer, 5/29/98

4

36.3 Multivariate Newton-Raphson - Problems

As with all the numerical techniques we have been using, it is necessary to practice with
them before we become proficient with them.

Example One:

() ()
() () 01xx)x,x(f

04xx)x,x(f

2
2

1212

2
2

2
1211

=+−=

=−+=
(36.11)

The 2x vs 1x plot of the following 2 functions is given below. The first function is that of a
circle, centered at the origin with radius 2. The second function is a parabola. We see there are
two and only two solutions to this systems of equations.

-3.0

-1.0

1.0

3.0

5.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

x1

x 2

f2

f1

ChE 301 Lecture Notes - D. Keffer, 5/29/98

5

In order to use MNRM, we must first determine the functional form of the partial
derivatives

() ()

() ()

1
x
fJx2

x
fJ

x2
x
f

Jx2
x
f

J

2

2
2,21

1

2
2,1

2
2

1
2,11

1

1
1,1

−=




∂
∂==




∂
∂=

=




∂
∂==




∂
∂=

Then following the algorithm outlined above:

Step One. Make an initial guess. One of the solutions looks to be at 1x = 1.0 and 2x = 2.0 .
Step Two. Using that initial guess, calculate the residual and the Jacobian.







−
=

12
42

J)1(and 



=
0
1

R)1(

Step Three. Solve)k()k()k(RxJ −=δ (Using Linear Algebra)






−
−=δ

2.0
1.0

x)1(

Step Four. Calculate new values for x via equation (36.10)





=

8.1
9.0

x)2(

Step Five. Loop back to Step 2. and repeat until converged.

Here are what further iterations yield

iteration x J R xδ
1






2
1







− 12
42






0
1






−
−

2.0
1.0

2






8.1
9.0







− 18.1
6.38.1







01.0
05.0







0087.0-
0104.0-

ChE 301 Lecture Notes - D. Keffer, 5/29/98

6

3






7913.1
8896.0







0000.1 -7792.1
5826.3 7792.1







−
−

3e1079.0
3e1835.0







4-0.1650e-
4-0.6991e-

4






7913.1
8895.0







0000.1 -7791.1
5826.3 7791.1







8-0.4887e
8-0.5159e







8-0.0059e-
8-0.2780e-

The other root in to the problem is located at 



−=

7913.1
8895.0

x by symmetry.

Example Two.

Linear systems are a subset of non-linear systems. The multivariate Newton-Raphson solve linear
systems exactly in one iteration, just as was the case in the single-variable problem.
Consider the system of linear equations:

() ()
() () 01x3x)x,x(f

04xx5)x,x(f

21212

21211

=+−=
=−+=

(36.12)

-7.0

-5.0

-3.0

-1.0

1.0

3.0

5.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

x1

x 2

f2

f1

ChE 301 Lecture Notes - D. Keffer, 5/29/98

7

In order to use MNRM, we must first determine the functional form of the partial derivatives

() ()

() ()

3
x
fJ1

x
fJ

1
x
f

J5
x
f

J

2

2
2,2

1

2
2,1

2

1
2,1

1

1
1,1

−=




∂
∂==




∂
∂=

=




∂
∂==




∂
∂=

Then following the algorithm outlined above:

Step One. Make an initial guess. One of the solutions looks to be at 1x = 2.0 and 2x = 2.0 .
Step Two. Using that initial guess, calculate the residual and the Jacobian.







−
=

31
15

J)1(and 




−

=
3

8
R)1(

Step Three. Solve)k()k()k(RxJ −=δ (Using Linear Algebra)





=δ

4375.1-
3125.1-

x)1(

Step Four. Calculate new values for x via equation (36.10)





=

5625.0
6875.0

x)2(

A second iteration will show that this is the exact solution.

36.3 Multivariate Newton-Raphson - MATLAB

Very quickly problems like this become too difficult to solve by hand. We rely on
software like MATLAB to solve these problems for us. MATLAB does not necessarily use a
multivariate Newton-Raphson method to solve a system of non-linear equations but it uses some
similar numerical technique. This alternate technique approximates the partial derivatives, so that
the user only has to enter the functional form of the functions and not that of the partial
derivatives.

ChE 301 Lecture Notes - D. Keffer, 5/29/98

8

On the website, you can download a routine called syseqn.m. This routine will allow you to solve
a system of non-linear algebraic equations.

The description for how to use the file can be obtained by opening MATLAB, moving to the
directory where you have downloaded the syseqn.m file, and typing
help syseqn
This yields:

syseqn(xo)
 syseqn solves a system of nonlinear algebraic equations.

 The system of equations are stored in the file syseqninput.m
 The initial guesses are given as a vector in xo.
 The solution is written to the screen and to the file "syseqn.out"

 Author: David Keffer Date: October 23, 1998

The routine uses the MATLAB instrinsic function fzero to solve the system of equations. At the
MATLAB command line, the routine is invoke by typing, for example,

syseqn(1)

if you had one equation and you wanted your initial guess to be 1xo = . Or, if you had a system
of three non-linear equation, you could invoke syseqn.m by typing

syseqn([2;4;6])

if you had one equation and you wanted your initial guess to be 2x 1,o = , 4x 2,o = ,

6x 3,o = .

The algebraic equations are entered in the file syseqninput.m This file can be as simple as

function [f] = syseqninput(x0)
f=x^2-1;

to solve for the roots of 01x2 =− . The syseqninput.m can also be much more complicated.
Two more involved examples of the syseqninput.m for (a) solving a system of mass balances in
an extractor, and (b) determining the chemical equilibria compositions and temperature in a vessel
where multiple reactions are occuring in a non-adiabatic and non-isothermal environment. In the
latter case, you will see that the syseqninput.m file can be very complicated. It doesn’t matter
how complicated it appears, so long as, at the end of the file, you have evaluated the function of
interest.

Example: Consider the following problem from chemical engineering. You want to use an
extraction process to remove a contaminant from a feed stream. The process diagram looks like
this:

ChE 301 Lecture Notes - D. Keffer, 5/29/98

9

mass transfer

Solvent, S

Raffinate, RFeed, F

Extract, E

The data you are given is

?x0.0x9999.0x0.0x
0.0x?x0.0x9.0x

?x?x0001.0x1.0x
?E?Rhr/mol150Shr/mol100F

f,Ef,Rf,Sf,F

c,Ec,Rc,Sc,F

b,Eb,Rb,Sb,F

====
====
====

====

You have six unknown variables.

You need six equations to solve these.

You have three mass balances:

f,Ef,S

c,Rc,F

ExSx

RxFx
ERSF

=
=

+=+

You have two constraints on the compositions

1xx

1xx

b,Ec,E

b,Rc,R

=+
=+

You have one separation ratio:

b,R

b,E

x
x

68.0K ==

ChE 301 Lecture Notes - D. Keffer, 5/29/98

10

These are your six equations. The second, third, and sixth equations are non-linear. You need to
use a technique like multivariate Newton-Raphson to solve this problem.

In order to use MNRM to solve this system of non-linear equations, rearrange the equations so
that the right hand side is zero

0
x
x

68.0f

01xxf

01xxf

0ExSxf

0RxFxf
0ERSFf

b,R

b,E
6

b,Ec,E5

b,Rc,R4

f,Ef,S3

c,Rc,F2

1

=−=

=−+=
=−+=

=−=
=−=
=−−+=

MATLAB can solve this problem easily, using the syseqn.m routine provided on the web-site.
You don’t alter the syseqn.m file. You simply type the equations into the syseqninput.m file
and then invoke the syseqn.m routine with reasonable initial guesses.

This routine can then be used to do parameter studies.
1. Look at different compositions in the raffinate as a function of different feed rates or solvent

rates or feed or solvent compositions. (In order to change parameters, like F, you only have
to change the value of F in extractinput.m.)

2. Look at different cases. Perhaps you want to specify the Raffinate composition and determine
the feedrate. (In order to change which functions are variables, you simply make sure that
you assign your initial guesses to the appropriate variables at the beginning of the routine.

3. Look at any mass balance system. This code gives the skeleton for solving any system of non-
linear equations. All that is required is changing the input file. With a little study of the
program, you will be able to modify it and use it in all your classes.

Using this code solves the above example in a fraction of a second:

966.0x0.0x9999.0x0.0x
0.0x95.0x0.0x9.0x

034.0x05.0x0001.0x1.0x
hr/mol26.155Ehr/mol74.94Rhr/mol150Shr/mol100F

f,Ef,Rf,Sf,F

c,Ec,Rc,Sc,F

b,Eb,Rb,Sb,F

====
====

====
====

