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Example Applications of systems of linear equations

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic
equations.

The examples are:

A.  Steady state mass balances on a single-stage liquid-liquid extractor 1
B.  Steady state mass balances on a flash tank 4
C.  Chemical Reaction Equilibria 7
D.  Determination of an independent set of chemical reactions 11
E. Normal Mode Analysis  of the Vibrational Spectrum of a Molecule 13

A.  Steady state mass balances on a single-stage liquid-liquid extractor

Consider an extractor:

extractor

Raffinate
R, {xR,b, xR,c, xR,f}

Extract
E, {xE,b, xE,c, xE,f}

Solvent
S, {xS,b, xS,c, xS,f}

Feed
F, {xF,b, xF,c, xF,f}

This unit removes uses a recycled furfural stream as the solvent to extract benzene from a cyclohexane product
stream. The data you are given is

?x?x9989.0x0.0x

?x?x0001.0x9.0x

?x?x0010.0x1.0x

hr/mol 155Ehr/mol 95Rhr/mol 150Shr/mol 100F

f,Ef,Rf,Sf,F

c,Ec,Rc,Sc,F

b,Eb,Rb,Sb,F

====
====
====

====

The equilibrium constants are:  0.20
x

x
K

b,R

b,E
b ==  and 05.0

x

x
K

c,R

c,E
c == .

You have six unknowns, the compositions of the raffinate stream and the composition of the extract stream.

(a)  Write six independent equations

benzene mole balance:  b,Eb,Rb,Sb,F ExRxSxFx0 −−+=
cyclohexane mole balance:  c,Ec,Rc,Sc,F ExRxSxFx0 −−+=
furfural mole balance:  f,Ef,Rf,Sf,F ExRxSxFx0 −−+= (not used, dependent)
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raffinate mole fraction constraint: f,Rc,Rb,R xxx1 ++=
extract mole fraction constraint: f,Ec,Eb,E xxx1 ++=

benzene equilibrium constraint: 0.20
x

x
K

b,R

b,E
b ==

c-hexane equilibrium constraint: 05.0
x

x
K

c,R

c,E
c ==

(b)  Put equations in linear form

benzene mole balance:  b,Sb,Fb,Eb,R SxFxExRx +=+
cyclohexane mole balance:  c,Sc,Fc,Ec,R SxFxExRx +=+
furfural mole balance:  f,Sf,Ff,Ef,R SxFxExRx +=+   (not used, dependent)

raffinate mole fraction constraint: 1xxx f,Rc,Rb,R =++
extract mole fraction constraint: 1xxx f,Ec,Eb,E =++

benzene equilibrium constraint: 0Kxx bb,Rb,E =−
c-hexane equilibrium constraint: 0Kxx cc,Rc,E =−

(c )  Put equations in matrix form
matrix of coefficients, A (6 x 6)

eqn/var
b,Rx c,Rx f,Rx b,Ex c,Ex f,Ex

1 R 0 0 E 0 0
2 0 R 0 0 E 0
3 1 1 1 0 0 0
4 0 0 0 1 1 1
5

bK− 0 0 1 0 0

6 0
cK− 0 0 1 0

vector of right hand sides, b (6x1)
eqn b
1

b,Sb,F SxFx +
2

c,Sc,F SxFx +
3 1
4 1
5 0
6 0

(d)  Compute the determinant and rank of the matrix.
detA = 3.2829e+005
rank(A) = 6
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rank(A|b) = 6

(e)  Using MATLAB, solve for the steady-state values of the unknowns.

x(1) = 0.0033 = b,Rx x(2) = 0.8448 = c,Rx x(3) = 0.1519  = f,Rx
x(4) = 0.0651 = b,Ex x(5) = 0.0422 = c,Ex x(6) = 0.8927= f,Ex
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B.  Steady state mass balances on a flash tank

Consider an isothermal flash tank:

Isothermal
Flash
Tank

F, {z}
V, {y}

L, {x}
This unit takes a pressurized liquid, three-component feed stream and exposes it to a low pressure vessel
maintained under isothermal conditions.  The net result is that some of the fluid is vaporized, while some fluid
remains liquid.  The compositions of the liquid and vapor phase are determined by the combined analysis of mass
balances and Raoult’s Law for vapor-liquid equilibrium.

The temperature in the flash tank is K298T =  and the pressure in the tank is kPa101P = .

Raoult’s Law states that the product of the liquid mole fraction of component i and the vapor pressure of
component i is equal to the partial pressure of component i in the vapor phase:

PyPx i
vap
ii =

Use the following data for the temperature given above

K298T @ bar6.0Pvap
A ==

K298T @ bar0.1Pvap
B ==

K298T @ bar0.2Pvap
C ==

?x?y3.0z

?x?y3.0z

?x?y4.0z

hr/molV -FLhr/mol738.44Vhr/mol 100F

CCC

BBB

AAA

===
===
===

===

Then you have six unknowns, the compositions of the liquid stream and the composition of the vapor stream.

(a)  Write equations

A mole balance:  AAA VyLxFz0 −−=
B mole balance:  BBB VyLxFz0 −−=   (not used, dependent)

C mole balance:  CCC VyLxFz0 −−=  (not used, dependent)

liquid mole fraction constraint: CBA xxx1 ++=
vapor mole fraction constraint: CBA yyy1 ++=
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A equilibrium constraint: PyPx A
vap
AA =

B equilibrium constraint: PyPx B
vap
BB =

C equilibrium constraint: PyPx C
vap
CC =

(b)  Put equations in linear form

A mole balance:  AAA FzVyLx =+
B mole balance:  BBB FzVyLx =+ (not used, dependent)

C mole balance:  CCC FzVyLx =+ (not used, dependent)

liquid mole fraction constraint: 1xxx CBA =++
vapor mole fraction constraint: 1yyy CBA =++

A equilibrium constraint: 0PyPx A
vap
AA =−

B equilibrium constraint: 0PyPx B
vap
BB =−

C equilibrium constraint: 0PyPx C
vap
CC =−

(c )  Put equations in matrix form
matrix of coefficients, A (6 x 6)

eqn/var
Ax Bx Cx Ay By Cy

1 L 0 0 V 0 0

2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 vap

AP 0 0 P− 0 0

5 0 vap
BP 0 0 P− 0

6 0 0 vap
CP 0 0 P−

vector of right hand sides, b (6x1)
eqn b
1

AFz
2 1
3 1
4 0
5 0
6 0

(d)  Compute the determinant and rank of the matrix.  (Here is the contents of a Matlab m-file I used to do this.)

F = 100;
V = 44.738;
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L = F - V;

zA = 0.4;
zB = 0.3;
zC = 0.3;

PvapA = 0.6;
PvapB = 1.0;
PvapC = 2.0;

P = 1.01325;

A = [L 0 0 V 0 0
   1 1 1 0 0 0
   0 0 0 1 1 1
   PvapA 0 0 -P 0 0
   0 PvapB 0 0 -P 0
   0 0 PvapC 0 0 -P]

b =[F*zA; 1; 1; 0; 0; 0]

rankA = rank(A)

detA = det(A)

x = A\b

xA = x(1);
xB = x(2);
xC = x(3);
yA = x(4);
yB = x(5);
yC = x(6);

The output from the code yielded:

rankA =6
detA =-83.9346

x =    [0.4893
    0.3018
    0.2090
    0.2897
    0.2978
    0.4125]

Ax =0.4893 Bx =0.3018 Cx =0.2090

Ay =0.2897 By =0.2978 Cy =0.4125
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C.  Chemical Reaction Equilibria

Consider that you have a three-component reactive mixture, all undergoing reversible reactions, as
pictured below:

A1

A2 A3

k12

k21

k32

k13

k23

k31

In this picture, the A’s are concentrations of the three species and the k’s are rate constants.  An example of this
system is the kinetic equilibrium between para-, meta-, and ortho-xylene.

Now suppose we want to know what the concentration is as a function of time.  We can write the mass
balances for each component.  There are no in and out terms (the reactor is a batch reactor).  There is only the
accumulation term and the reaction terms.  Also, assume each reaction is first order in concentration.

223332113331
3

332223112221
2

331113221112
1

AkAkAkAk
dt

dA

AkAkAkAk
dt

dA

AkAkAkAk
dt

dA

+−+−=

+−+−=

+−+−=

(28.6)

We can gather like terms and rearrange the right hand side:

33231223113
3

33222321112
2

33122111312
1

A)kk(AkAk
dt

dA

AkA)kk(Ak
dt

dA

AkAkA)kk(
dt

dA

+−+=

++−=

+++−=

(28.7)

and we change this system of equations into matrix & vector form:

AX
dt
Ad

= (28.8)
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where
















=

















+−
+−

+−
=

3

2

1

32312313

32232112

31211312

A

A

A

A

)kk(kk

k)kk(k

kk)kk(

X

(28.9)

One underbar denotes a column vector; two underbars denotes a matrix.  This is a system of linear differential
equations.  If we want the steady-state solution to the differential equations, we set the accumulation term to zero.
Then we have a system of linear algebraic equations, as shown:

AX0 = (28.10)

Let’s solve for the steady-state concentration.

The rate constants are given as:

   sec15.0k   sec05.0k   sec25.0k

   sec30.0k   sec20.0k   sec50.0k
1

32
1

31
1

21

1
23

1
13

1
12

−−−

−−−

===

===

The determinant of X  is 0 and the rank is 2.  Therefore we have an infinite number of solutions. Why?

If we look at X , we see that ROW3 = -ROW1 - ROW2.  Since equation 3 is not

linearly independent we can drop it.  Then we have 2 equation and three unknowns.  We have 2 options.

Option Number One:
Since, we have an infinite number of solutions, we can just make one of the variables no longer variable. Then we

will have the rest of A relative to this basis.  This requires us to rearrange X  since 3A is no longer a variable.

We come up with the new equations

bAX =

where









−
−

=







=








+−

+−
=

332

331

2

1

232112

211312

Ak

Ak
b        

A

A
A    

)kk(k

k)kk(
X
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One can see that we have dropped the third equation and since  3A is no longer a variable, we have moved it to

the right hand side of the equations.  (If you don’t see this, right these equations out in non-matrix form and then

move 3A to the right-hand-side of the equation, and then change back into matrix form.  You will get this result.)

With these new definitions, we can pick a value for 3A , like 1A3 = . Now MATLAB says det(x) =0.26 .

MATLAB gives the inv(x) upon request and provides the solution

       
5.0

25.0
 

A

A
A 

2

1








=








=

which gives us the example solution vector:

       

1

5.0

25.0

 

A

A

A

A 

3

2

1
















=

















=

If we want to find the molar compositions, then we will require that   1A
3

1i
i =∑

=
.  In order to normalize our

solution vector so that they sum to one, we use the standard normalization equation:

    
A

A
z 

3

1i
i

i
i

∑
=

=

then we find the steady state molar compositions to be:

   

7/4

7/2

7/1

z 
















= .

 Option Number Two:
If we only have 2 equations for 3 unknowns, we can find another independent equation.  If our unknowns

are mole fractions we know they must sum to one.

1A
3

1i
i =∑

=
This is our third equation.  We drop equation three from the previous formulation of the problem and we have

bAX =
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where
















=
















=
















+−

+−
=

1

0

0

b    

A

A

A

A     

111

k)kk(k

kk)kk(

X

3

2

1

32232112

31211312

This matrix has a determinant of 0.455 and rank of 3.  Therefore we have a set of 3 independent equations.

Solving for   A  yields

   

7/4

7/2

7/1

A
















=

which is the same result we obtained doing the problem the other way.
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D.  Determination of an independent set of chemical reactions

Problem 1.
Determine the number of independent reaction in the following set by examining the rank of the

stoichiometric coefficient matrix. (In the stoichiometric coefficient, the rows represent reactions and the columns
represent molecules.)

4 NH3 + 5 O2 = 4 NO + 6 H2O
4 NH3 + 3 O2 = 4 N2 + 6 H2O
2 NO + O2 = 2 NO2

4 NH3 + 6 NO = 5 N2 + 6 H2O
N2 + O2 = 2 NO

























−
−

−−
−

−
−−
−−

002

606

 0      2   2

110

504

010
600

604

OHNONO

234

054

NONH

reactions

molecules

22223

This is a non-square matrix, five rows, six columns. We can do the same NGE on a non-square matrix as on a
square matrix to reach Upper triangular form

STEP ONE. (zero the first column below row 1)
ROW2 = ROW2 - ROW1
ROW4 = ROW4 - ROW1

























−
−

−−

−
−

−−

002

0010

 0      2   2

110

550

010
004

604

OHNONO

220

054

NONH

reactions

molecules

22223

STEP TWO. (zero the second column below row 2)
ROW3 = ROW3 + ½*ROW2
ROW4 = ROW4 - 5/2*ROW2
ROW5 = ROW5 - ½*ROW2
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























−
−

−−

000

000

 0      2   4

000

000

1   0   0
004

604

OHNONO

220

054

NONH

reactions

molecules

22223

There are only three independent chemical reactions.  This kind of analysis is important when you are doing an
process analysis on a reactive system.  You need to have only independent reactions incorporated in your material
and energy balances.

The stoichiometric coefficient matrix tells the engineer, given a set of reactions, how many of those
reactions are (linearly) independent.  It will not give the engineer a complete set of reactions, unless (1) the number
of reactions in the set is greater than or equal to the total number of independent reactions and (2) all components
in the system appear in at least one reaction.

Problem 2.
Determine the number of independent reactions by using the atomic matrix.  (The atomic matrix has atoms on the
rows and molecules along the columns



















2    0   03    0  0
121

011

OHNONO

020

102

NHON

H

O

N
atoms

molecules

22322

This matrix is already in upper triangular form.  The rank of the matrix is three.
In reactive process analysis, the total number of independent reactions is equal to the number of

components less the rank of atom matrix.  Since we have six components and a rank of three, we have three
independent reactions.  The atomic matrix tells the engineer how many independent reactions there can be.  This is
different in several ways from the stoichiometric matrix above.

From atomic matrix,

# of independent reactions = # of chemical species - rank of atomic matrix

If you want to find a set of three reactions that are complete and independent, then you must postulate
three reactions, and use the stoichiometric matrix technique, outlined above, to verify that they are independent.
The reactions you postulate must contain all of the chemical species.

Here is an example set of reactions:

N2 + O2 = 2 NO
2 NO + O2 = 2 NO2

4 NH3 + 5 O2 = 4 NO + 6 H2O

These are guaranteed to be linearly independent since each reaction contains a unique species.  Reaction 1 is the
only reaction to contain N2.  Reaction 2 is the only reaction to contain NO2.  Reaction 3 is the only reaction to
contain NH3.
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E.   Normal Mode Analysis  of the Vibrational Spectrum of a Molecule

Consider that we want to investigate the vibrational properties of carbon dioxide, CO2.  Our model of the
molecule looks like this:

O C O

spring
(k)

spring
(k)

x0,1 x0,2 x0,3

x1 x3x2

We model the interaction between molecules as Hookian springs.  For a Hookian spring, the potential

energy, U , is

2
0 )xx(

2
k

U −= (28.1)

and the force, F , is

)xx(kF 0−−= (28.2)

where k  is the spring constant (units of kg/s2), 0x  is the equilibrium displacement, and x  is the actual

displacement.
We can write Newton’s equations of motion for the three molecules:

( )
( ) ( )
( )2333O

231222C

1211O

xxkFam

xxkxxkFam

xxkFam

−−==

−+−−==

−==

(28.3)

Knowing that the acceleration is the second derivative of the position, we can rewrite the above equations in matrix
form as (first divide both side of all of the equations by the masses)

xA
dt

xd
2

2

= (28.4)

where
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














=





















−

−

−

=

3

2

1

OO

CCC

OO

x

x

x

x

m
k

m
k0

m
k

m
k2

m
k

0m
k

m
k

A

(28.5)

Solving this system of second order linear differential equations yields the integrated equations of motion for
carbon dioxide.  However, even without solving this system, because the system is linear, there are special
techniques we can use to tell us a lot about the system’s behavior.

Let us determine the eigenvalues and the eigenvectors of the matrix A .

First we have:





















λ−−

λ−−

λ−−

=λ−

OO

CCC

OO

m
k

m
k0

m
k

m
k2

m
k

0m
k

m
k

IA (28.6.5)

The characteristic equation is given by (using equation 28.19)

( )

0m
k

m
k

m
k

m
k

m
k

m
k                 

m
k

m
k2

m
kIAdet

OCOOCO

OCO

=





 λ−−−






 λ−−−







 λ−−






 λ−−






 λ−−=λ−

(28.6.6)

Solving this for λ , we have

( )

0mm
k2

mm
k2                   

m
k

m
k2

m
kIAdet

CO

2

C
2

O

3

OCO

=λ++






 λ−−





 λ−−





 λ−−=λ−

(28.6.7)

( ) 0mm
k2

m
k

m
k2

m
k2IAdet

CO

2
2

O

2

CO

2 =



















++λ






 ++λλ−=λ− (28.6.8)

( ) 0
m
m

21
m
k

m
k

IAdet
C

O

OO
=


















++λ








+λλ−=λ− (28.6.9)
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So the roots to the characteristic equation are









+−=λ−=λ=λ

C

O

O
3

O
21 m

m
21

m
k

         
m
k

      0 (28.6.10)

The eigenvectors for each of these eigenvalues are given by

( ) 0wIA m3m3 =λ− (28.6.4)

( ) 0w

m
k

m
k0

m
k

m
k2

m
k

0m
k

m
k

wIA m

OO

CCC

OO

m1 =





















−

−

−

=λ− (28.6.11)

since the determinant of A is zero, we cannot use the inverse to calculate the solution, but we can still use NGE if

we augment the matrix by the solution vector.  Since the equations are not linearly independent, we can remove

1,3w  as a variable and set it equal to one.  Then our system becomes:












−=

























−

−

C1,2

1,1

CC

OO

m
k
0

w

w

m
k2

m
k

m
k

m
k

(28.6.12)

With this new matrix, we can calculate the determinant

0
mm

k
)Adet(

CO

2

2 ≠=

so it has an inverse which is

















−−

−−
=

















−−

−−
=−

k
m

k
m

k
m

k
m2

m
k

m
k

m
k

m
k2

mm
k

1
A

CO

CO

OC

OC

CO

2
1

2

So that the solution to equation (28.6.12) is









=








1

1
w

w

1,2

1,1
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and the eigenvector that corresponds to 01 =λ  is
















=

1

1

1

w1 (28.6.15)

To find the second eigenvector, the eigenvector that corresponds to
O

2 m
k−=λ





















−−−

−−−

−−−

=λ−

OOO

COCC

OOO

2

m
k

m
k

m
k0

m
k

m
k

m
k2

m
k

0m
k

m
k

m
k

IA





















+−=λ−

0m
k0

m
k

m
k

m
k2

m
k

0m
k0

IA

O

COCC

O

2

0)IAdet( 2 =λ−

As before, we remove the third equation and the third variable from the equation:












−=

























+− C2,2

2,1

OCC

O

m
k
0

w

w

m
k

m
k2

m
k

m
k0

(28.6.16)

With this new matrix, we can calculate the determinant

0
mm

k
)Adet(

CO

2

2 ≠−=

so it has an inverse which is















 −
=

















−

−+−

−

=−

0k
m

k
m

k
m

k
m2

0m
k

m
k

m
k

m
k2

mm
k

1
A

O

CCO

C

OOC

CO

2
1

2

So that the solution to equation (28.6.16) is
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






−
=








0

1
w

w

2,2

2,1

and the eigenvector that corresponds to 
O

2 m
k−=λ  is















−
=

1

0

1

w2 (28.6.17)

To find the third eigenvector, the eigenvector that corresponds to 







+−=λ

C

O

O
3 m

m
21

m
k





















=λ−

CO

COC

OC

3

m
k2

m
k0

m
k

m
k

m
k

0m
k

m
k2

IA

0)IAdet( 3 =λ−

As before, we remove the third equation and the third variable from the equation:












−=

























C3,2

3,1

OC

OC

m
k
0

w

w

m
k

m
k

m
k

m
k2

(28.6.18)

With this new matrix, we can calculate the determinant

0
mm

k
)Adet(

CO

2

2 ≠=

so it has an inverse which is

















−

−
=

















−

−
=−

k
m2

k
m

k
m

k
m

m
k2

m
k

m
k

m
k

mm
k

1
A

OO

CC

CC

OO

CO

2
1

2

So that the solution to equation (28.6.16) is
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












−=









C

O
3,2

3,1

m
m2
1

w

w

and the eigenvector that corresponds to 







+−=λ

C

O

O
3 m

m
21

m
k

 is



















−=

1
m
m2
1

w
C

O
3 (28.6.19)

So we have the three eigenvalues and the three eigenvectors.  So what?  What good do they do us?
For a vibrating molecule, the square root of the absolute value of the eigenvalues from doing an

eigenanalysis of Newton’s equations of motion, as we have done, are the normal frequencies.   You see that the
units of the eigenvalues are 1/sec2, so the square root has units of frequency (or inverse time).

For carbon dioxide, the three normal frequencies are:



































+

=ω

C

O

O

O

m
m2

1
m
k

m
k

0

The frequency of zero is no frequency at all.  It is not a vibrational mode.  In fact, it is a translation of the

molecule.  We can see this by examining the eigenvectors.  The eigenvector that corresponds to 01 =λ   or

011 =λ=ω is
















=

1

1

1

w1 (28.6.15)

This is a description of the normal vibration associated with eigenfrequency of zero.  It says that all atoms move
the same amount in the x-direction.
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O C O

The eigenvector that corresponds to 
O

2 m
k−=λ   or 

O
22 m

k
=λ=ω  is















−
=

1

0

1

w2 (28.6.17)

This eigenvector describes a vibration where both the oxygen move away from the C equally and the carbon does
not move.

O C O

The eigenvector that corresponds to 







+−=λ

C

O

O
3 m

m
21

m
k

  or









+=λ=ω

C

O

O
33 m

m
21

m
k

 is



















−=

1
m
m2
1

w
C

O
3 (28.6.19)

This eigenvector describes a vibration where both the oxygen move to the right and the carbon move more to the
left, in such a way that there is no center of mass motion.
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O C O

The normal modes of motion provide a complete, independent set of vibrations from which any other vibration is a
linear combination.


