ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 5/29/98 (updated 03/01)

Example Applications of systems of linear equations

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic

equations.

The examples are:

A. Steady state mass balances on a single-stage liquid-liquid extractor

B. Steady state mass balances on a flash tank

C. Chemical Reaction Equilibria

D. Determination of an independent set of chemical reactions
E. Normal Mode Analysis of the Vibrational Spectrum of a Molecule

A. Steady state mass balances on a single-stage liquid-liquid extractor

Consider an extractor:

Extract

[l SN I NG

w

Solvent

E, {Xeps Xger Xe b
4+

—>
Feed

extractor

S, {Xspr Xs0r Xs 1}
—

>
Raffinate

Fo {Xepr Xp oo Xegd

R, {Xgrp Xger X}

This unit removes uses a recycled furfural stream as the solvent to extract benzene from a cyclohexane product

stream. The datayou are given is

F =100mol/hr S =150mol/hr R =95mol/hr E=
XF,b =0.1 XS,b =0.0010 XR,b =?
Xgc =0.9 Xg¢ =0.0001 XRc =7
Xgf =0.0 Xg¢ =0.9989 XRf =7
The equilibrium constants are: Ky = XE—b =20.0 and K =
Rb

155mol/hr
XE,b =?

XEc =7

XE,f =7

XEc —0.05.
XR,c

Y ou have six unknowns, the compositions of the raffinate stream and the composition of the extract stream.

(8) Write six independent equations
benzene mole balance:

cyclohexane mole balance:

furfural mole balance:

0= FXF,b + SXS,b -
0 =FXgc +SXg -
0= FXF’f + SXS’f -

RXgrp -
RXgr -
RXR - EXE ¢ (not used, dependent)
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raffinate mole fraction constraint: 1 = XR,b + XR,c + XR,f

extract mole fraction constraint: 1= XE,b + XE,c + XE,f

X
benzene equilibrium constraint: K, = ZEb —20.0
XRb

X
c-hexane equilibrium constraint: K, = ZEc =0.05

XR,c
(b) Put equationsin linear form
benzene mole balance: RXrp +EXgp =FXgp +SXgp
cyclohexane mole balance: RXgc +EXge =FXpe +SXs,
furfural mole balance: RXr¢ +EXgs =FXgt +SXg; (not used, dependent)

raffinate mole fraction constraint; XR,b + XR,c + XR,f =1

extract mole fraction constraint: XE,b + XE,c + XE,f =1

benzene equilibrium constraint: ~ Xgp = XgpKp =0

c-hexane equilibrium constraint:  Xg . - Xg Kg =0

(c) Put equationsin matrix form
matrix of coefficients, A (6 x 6)

evar - Xp XRc XRf XEp XEc XEgf
1 R 0 0 E 0 0
2 0 R 0 0 E 0
3 1 1 1 0 0 0
4 0 0 0 1 1 1
5 K, O 0 1 0 0
6 0 K, O 0 1 0

vector of right hand sides, b (6x1)

egn b
! FXpp +SXsp
2 FXgc +SXg,
3 1
4 1
5 0
6 0

(d) Compute the determinant and rank of the matrix.
detA = 3.2829e+005
rank(A) =6
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rank(Alb) =6

(e) Using MATLAB, solve for the steady-state values of the unknowns.

(1) =0.0083= XRp X(2) =0.8448 = XR ¢ x(3)=0.1519 = XR¢
X(4) = 0.0651 = Xg x(5) = 0.0422 = Xg ¢ x(6) = 0.8927= Xg ¢
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B. Steady state mass balances on a flash tank

Consider an isothermal flash tank:

V., {y}
F. {2} | sothermal >
—> Flash
Tank >
L, {x}

This unit takes a pressurized liquid, three-component feed stream and exposes it to alow pressure vessel
maintained under isothermal conditions. The net result is that some of the fluid is vaporized, while some fluid
remains liquid. The compositions of the liquid and vapor phase are determined by the combined analysis of mass
balances and Raoult’s Law for vapor-liquid equilibrium.

The temperature in the flash tank is T = 298K and the pressure in the tank is P = 101kPa.

Raoult’s Law states that the product of the liquid mole fraction of component i and the vapor pressure of
component i is equal to the partial pressure of component i in the vapor phase:

vap _—
XiP T = yiP
Use the following data for the temperature given above

P, =0.6bar @ T = 298K
Pz =1.0bar @ T = 298K
P2 =2.0bar @ T = 298K

F=100mol/hr V =44.738mol/hr L=F-V mol/hr

z, =04 Ya =7 Xp =7
zg =0.3 yg =7 Xg =7
zc =0.3 Yo =7 X =7

Then you have six unknowns, the compositions of the liquid stream and the composition of the vapor stream.

(8) Write equations

A mole balance: 0=Fz, - LX5 - VY4
B mole balance: 0=Fzg - LXg - VYg (not used, dependent)
C mole balance: 0 =FZz; - LXc - VY (not used, dependent)

liquid mole fraction constraint: 1= Xp T Xg X
vapor mole fraction constraint: 1=y +Yg +Yc
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A equilibrium constraint: XAPXap = yAP
B equilibrium constraint: XBPL;:ap = yBP
C equilibrium constraint: XCP(\:’ap = yCP

(b) Put equationsin linear form

A mole balance: LXa +VYya =Fzp
B mole balance: Lxg + VYyg =FZzg(not used, dependent)
C mole balance: LXc + VY =F2z( (not used, dependent)

liquid mole fraction constraint: Xp TXg tXc = 1
vapor mole fraction constraint: Y5 +Yg t Y =1

A equilibrium constraint: XAPXap -yP=0
B equilibrium constraint: XBPgap - ygP =0
C equilibrium constraint: XCP(\:/ap -ycP=0

(c) Put equationsin matrix form
matrix of coefficients, A (6 x 6)

svar X Xg Xc YA Ys Yc
1 L 0 0 V 0 0
2 1 1 1 0 0 0
3 0 0 0 1 1 1
4 vap 0 0 -P 0 0
PA
5 0 0 0 - 0
pé/ap P
6 0 0 0 0 -
P(\:/ap P
vector of right hand sides, b (6x1)
egn b
1
Fz,
2 1
3 1
4 0
5 0
6 0

(d) Compute the determinant and rank of the matrix. (Hereisthe contents of a Matlab m-file | used to do this.)

100;
44.738;
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N
v9)
(L]

)
S
W
nnu
N o
coo

b =s[F*zA; 1, 1; 0; 0; 0]
rankA = rank(A)

det A = det (A

x = ADb

XA = x(1);
xB = x(2);
xC = x(3);
yA = x(4);
yB = x(5);
yC = x(6);

The output from the code yielded:

rankA =6
detA =-83.9346

x= [0.4893
0.3018
0.2090
0.2897
0.2978
0.4125]

X 5 =0.4893 X g =0.3018 X ¢ =0.2090

Y 5 =0.2897 Y5 =0.2978 Y ¢ =0.4125
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C. Chemical Reaction Equilibria

Consider that you have a three-component reactive mixture, all undergoing reversible reactions, as

AN

. As

23

In this picture, the A’s are concentrations of the three species and the k' s are rate constants. An example of this
system is the kinetic equilibrium between para-, meta-, and ortho-xylene.

Now suppose we want to know what the concentration is as a function of time. We can write the mass
balances for each component. There are no in and out terms (the reactor is a batch reactor). Thereis only the
accumulation term and the reaction terms. Also, assume each reaction isfirst order in concentration.

dA

dA

d—t2 = - Ky Ay KA - KagA, +KgpAg (28.6)
dA

d—t3 = -KqAz +KiaAq - KapAg +KogA,

We can gather like terms and rearrange the right hand side:

dA
d_tl = - (k12 T Ki3)Ag +KpAy +KgiA5
dA,
F =k1oAg - (Kop +Ka3)An +K3Ag (28.7)
dA
d—t3 =ki3A1 +Ky3A; - (Kap +Kgo)Az
and we change this system of equations into matrix & vector form:
9a . XA (28.8)
(o |
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where
S (SPRASTY) Koy Ksg U
- € u
X=g kp - (kg1 +Kz3) K2
8 ki Kos - (ka1 tK32)
(28.9)
AU
—ejy u
A=

eAsH
One underbar denotes a column vector; two underbars denotes a matrix. Thisis a system of linear differentia

equations. If we want the steady-state solution to the differential equations, we set the accumulation term to zero.
Then we have a system of linear algebraic equations, as shown:

0=XA (28.10)

Let’s solve for the steady-state concentration.

The rate constants are given as:

ki, =0.50sec’®  k;3 =0.20sec’’  k,; =0.30sec’’
k,, =0.25sec’? kg =0.05sec’* kg, =0.15sec™?

The determinant of é is0 and therank is 2. Therefore we have an infinite number of solutions. Why?

If welook at é , we see that ROW3 = -ROW1 - ROW?2. Since equation 3 is hot
linearly independent we can drop it. Then we have 2 equation and three unknowns. We have 2 options.

Option Number One:
Since, we have an infinite number of solutions, we can just make one of the variables no longer variable. Then we

will have the rest of A relative to this basis. This requires usto rearrange X since Az isno longer avariable.

We come up with the new equations

XA =b
where
> (Kqp +Ky3) Koy u éA1u é k3Azu
X=¢ g AZe,a B=e '
& Koo - (kop +ko3) Az & KAz
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One can see that we have dropped the third equation and since A3 isno longer a variable, we have moved it to
the right hand side of the equations. (If you don’t see this, right these equations out in non-matrix form and then
move A3 to the right-hand-side of the equation, and then change back into matrix form. You will get this result.)

With these new definitions, we can pick avaluefor Ay, like A3 = 1. Now MATLAB says det(x) =0.26 .
MATLAB givesthe inv(x) upon request and provides the solution

A = €A1U_ €0.250
R=ey u-énc U
éA2t 805
which gives us the exampl e solution vector
€A,U  €0.250
_6, U_é
en U g 1 ¢
Pan €18
3
If we want to find the molar compositions, then we will require that @ Ai =1 . Inorder to normalize our
i=1

solution vector so that they sum to one, we use the standard normalization equation:

Zi:

3
a A
i=1

then we find the steady state molar compositions to be:
€l/7
z = gz 17
g7
Option Number Two:

If we only have 2 equations for 3 unknowns, we can find another independent equation. 1f our unknowns
are mole fractions we know they must sum to one.

[eo Xy ey ey end

3
ahA =1
i=1
Thisis our third equation. We drop equation three from the previous formulation of the problem and we have

XA=b
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where
€& (Kyp +Ky3) Koq ks U eA1l é0u
_é U _é N
X=g kp - (ko tkag) Kapy A=gAr5 b=
e 1 1 1 BAsf elg

This matrix has a determinant of 0.455 and rank of 3. Therefore we have a set of 3 independent equations.
Solving for A yields

which is the same result we obtained doing the problem the other way.

10
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D. Determination of an independent set of chemical reactions

Problem 1.
Determine the number of independent reaction in the following set by examining the rank of the

stoichiometric coefficient matrix. (In the stoichiometric coefficient, the rows represent reactions and the columns
represent molecules.)

4NH3;+50,=4NO +6H,0O
4NH3+3OZ=4N2+6H20
2NO + 0O, =2NO0O,

4NH3;+6NO=5N,+6H,0

N2 + Oz =2NO
molecules
&NH; O, N, NO NO, H,Ou
é 1
(:e' 4 -5 0 4 0 6 G
reactions g' 51 _' 13 02 _02 g 60 3
é 1
é- 4 0 5 -6 0 6@
o0 -1-1 2 0o o0}

This is a non-square matrix, five rows, six columns. We can do the same NGE on a non-sguare matrix as on a
square matrix to reach Upper triangular form

STEP ONE. (zero the first column below row 1)
ROW2 = ROW2 - ROW1
ROW4 = ROW4 - ROW1

molecules
Hz O, N, NO NO, H,0u

2

é u
§-4 -5 0 4 0 6l;|
reactions g% 12 02 ‘21 g OOH
é u
@0 5 5 -10 0 Ol;|
€0 -1 -1 2 0 oY

STEP TWO. (zero the second column below row 2)
ROW3 = ROW3 + ¥2*ROW2
ROW4 = ROW4 - 5/2*ROW2
ROWS = ROWS5 - ¥2* ROW2

11
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molecules
Hz O, N, NO NO, H,0u

e

é u
g4 -5 0 4 0 6y
reactions 28 02 12 j g OOH
é u
(:g 0 0O O 0 0 Ol;|
&0 0 0 0 0o oY

There are only three independent chemical reactions. This kind of analysisisimportant when you are doing an
process analysis on a reactive system. Y ou need to have only independent reactions incorporated in your material
and energy balances.

The stoichiometric coefficient matrix tells the engineer, given a set of reactions, how many of those
reactions are (linearly) independent. 1t will not give the engineer a complete set of reactions, unless (1) the number
of reactionsin the set is greater than or equal to the total number of independent reactions and (2) all components
in the system appear in at least one reaction.

Problem 2.
Determine the number of independent reactions by using the atomic matrix. (The atomic matrix has atoms on the
rows and molecules along the columns

molecules
&\, O, NH3 NO NO, H,0u
Ngz 0o 1 1 1 0

Oéo 2 o 1 2 1
HEO O 3 0 0 2

atoms

NN

This matrix is aready in upper triangular form. The rank of the matrix is three.

In reactive process analysis, the total number of independent reactions is equal to the number of
components less the rank of atom matrix. Since we have six components and a rank of three, we have three
independent reactions. The atomic matrix tells the engineer how many independent reactions there can be. Thisis
different in several ways from the stoichiometric matrix above.

From atomic matrix,

# of independent reactions = # of chemical species - rank of atomic matrix

If you want to find a set of three reactions that are complete and independent, then you must postulate
three reactions, and use the stoichiometric matrix technique, outlined above, to verify that they are independent.
The reactions you postulate must contain all of the chemical species.

Here is an example set of reactions:

N2+OZ=2NO
2NO + 0O, =2N0O,
4NH3;+50,=4NO +6H,0O

These are guaranteed to be linearly independent since each reaction contains a unique species. Reaction 1 isthe
only reaction to contain N,. Reaction 2 isthe only reaction to contain NO,. Reaction 3 is the only reaction to
contain NHs.

12
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E. Normal Mode Analysis of the Vibrational Spectrum of a Molecule

Consider that we want to investigate the vibrational properties of carbon dioxide, CO,. Our model of the
molecule looks like this:

spring spring

(k) (k)
O @
C O

O

X0 Xo.2 Xo3
—» —» —»
X4 X, Xq

We model the interaction between molecules as Hookian springs. For a Hookian spring, the potential
energy, U, is

= E(x - Xg)? (28.1)
2
and theforce, F, is
F=-k(x- Xp) (28.2)

where K isthe spring constant (units of kg/s?), X isthe equilibrium displacement, and X is the actual

displacement.
We can write Newton’s equations of motion for the three molecules:

moay =Ry =k(xz - x1)
mcap = Fp = -K(xz - x1)+k(x3 - x7)
Moag =F3 = -k(x3 - X)

(28.3)

Knowing that the acceleration is the second derivative of the position, we can rewrite the above equations in matrix
form as (first divide both side of al of the equations by the masses)

2
E:AX

preaialat (28.4)

where

13
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é u
& Smo Smo 0
_ék ) a
A= M. P She
¢’ G
g /o /noH (28.5)
610
_ u
Z—gxza
gX3H

Solving this system of second order linear differential equations yields the integrated equations of motion for
carbon dioxide. However, even without solving this system, because the system is linear, there are special
techniques we can use to tell us alot about the system’ s behavior.

Let us determine the eigenvalues and the eigenvectors of the matrix é .

First we have:
€ k/ y o U
€ /Mo Mo o
11=¢ k _2k/ k u
A-1l=¢ /nc /nc | /nc ; (28.6.5)
I
& Mo Mo H

The characteristic equation is given by (using equation 28.19)
detA-ll:a?y -|"?9‘?2y -|";H?y 10
(= )8 mo  ® /MmcT ® /Mo 5
S e Sno 1 o S o 1§
mo/Mc& /Mo”5 /Mo/mMc& /Mo

(28.6.6)

Solving this for | , wehave
det(A- 11)= 8/ -1 2/ "é/ﬂo 19
(%]

+2k +2k | =0
mozmc MpoMmc

)= G2, 2/ § &2 2k2 .
det(A- 11)= IQI + / +/ncg +§ o , mome 0 (28.6.8)

(28.6.7)

K k@ mgdd.
det(A - | |)_-| &+ ag o 1+2mC %_o (286.9)

14
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So the roots to the characteristic equation are

5
l,=0 |2:-L |3:-L3?L+2moi (28.6.10)
Mo Mo Mc g

The eigenvectors for each of these eigenvalues are given by

@3 - m!g)‘ﬂm =0 (28.6.4)
e Ko h o U
€ /Mg Mo u
8

@' ' 1!)wm = é%c - Z%C %c Wm =0 (28.6.11)
£ 0 y i y 4
g Mo moH

since the determinant of é is zero, we cannot use the inverse to cal culate the solution, but we can still use NGE if
we augment the matrix by the solution vector. Since the equations are not linearly independent, we can remove
W 3 1 asavariable and set it equal to one. Then our system becomes:

é k u, N N
& /mo /no gwiau_€ 0 u
€ By U=€ k/ U (28.6.12)
e k - 2k l;le 21'\ A m s
§/mc =~ /meg 2 € /mcd

With this new matrix, we can calcul ate the determinant
k2
det(A,)=———1 0
- MoMc

S0 it has an inverse which is

& 2/ /
-1 mc mOu_

O C

AN
5
=~
| 3

13>
||

@ co> @,
3
~<
3
AR
OO

So that the solution to equation (28.6.12) is

15
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and the eigenvector that corresponds to | 1= Ois

e

A

wg = glﬂ (28.6.15)

AL T

el

To find the second eigenvector, the eigenvector that corresponds tol 2 =- %
O

oo Sho M 0
g Mo Mo Mo l:l
L N T
= ¢ mc mc Mo mc u
é
= 0 k -k .-k .
g o o™ Fnok
é Kk u
e 0 o 0 g
- -k _ 2k k k u
A-12l ‘?/nc /nc+/no /nclﬂ
& a
= 0 k 0o -
& Mo H
det(A- | 5l) =0

As before, we remove the third equation and the third variable from the equation:

0 V Uy oo € 0 0

Mo EW12U _ % v
K 2/ L k/ Gw 229— e k/ U (28.6.16)
&/ Mc me /mogf +4U & /McH

With this new matrix, we can calcul ate the determinant

D D

es

k2
eUB2) = fome
o'''c

S0 it has an inverse which is

e Zy +y - y u ézmo/_ m(% m(/l:l

Al 1 & /mc /mo Mou_é /k k kU

=2 k2 ¢ -K o U & mo o U

-— 8 mc g e k g
MoMmc

So that the solution to equation (28.6.16) is

16
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and the eigenvector that correspondsto | 5 = - % is
O

¢l
wp =305 (28.6.17)
elH
To find the third eigenvector, the eigenvector that corresponds to | 3 =-—¢Cl+2— o
Mo Mc g
&2k o Y
mC mo l:l
-lal=¢ o
< mc mo mCl:'
? 0 / 2/ .
& mo /mcH
det(A-13))=0

As before, we remove the third equation and the third variable from the equation:

eZ/nC mo ew13 0
& ne /nou S

With this new matrix, we can calcul ate the determinant

(28.6.18)

o\
@D, D> (D~
GZ\ ey en?

K2
det(A,)=——10
o MoMmc

S0 it has an inverse which is

e
-1 1 é/no /no:
2 ‘3/ 2/ u
e /Mmc Mc g

MoMmc

S
~
| 3

13>
||

a; ™ @ D
5
~
)
5.3
;x\;\\
[eNaY el

So that the solution to equation (28.6.16) is

17
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4 v é 1 u
gvv\\lll\?’gzg 2mol;|
230 § mc §
. _ k moO
and the eigenvector that corresponds to | 3=-—¢Cl+2—7is
Mo Mc g
¢ 1 U
_% 2mo Y
Wg =€ ——Uu (28.6.19)
é Mca
e 1 ¢

So we have the three eigenvalues and the three eigenvectors. So what? What good do they do us?

For a vibrating molecule, the square root of the absolute value of the eigenvalues from doing an
eigenanalysis of Newton’s equations of motion, as we have done, are the normal frequencies. Y ou see that the
units of the eigenvalues are 1/sec?, so the square root has units of frequency (or inverse time).

For carbon dioxide, the three normal frequencies are:

3 o
o"\_

k

CM(\D D D> D D> D> (D
3
@)
CDG|_3\8
N
3
@)
--O
NC

The frequency of zero is no frequency at all. It isnot avibrational mode. Infact, it isatrandation of the
molecule. We can see this by examining the eigenvectors. The eigenvector that corresponds to | 1= O or

Wj_:\/H:OiS

e

A 7

wWq = Slﬂ (28.6.15)

Aq 7

el

Thisis adescription of the normal vibration associated with eigenfrequency of zero. It saysthat all atoms move
the same amount in the x-direction.

18
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— —> —>

k
The eigenvector that corresponds to | 2 =- y or Wy = 1/|| 2| = |—is
Mo Mo

E

(28.6.17)

I<
N
1
@D D D P
= O
[eo Y e en)

This eigenvector describes a vibration where both the oxygen move away from the C equally and the carbon does

not move.

O C O

«— —>

The eigenvector that corresponds to | 3 =-—0Cl+2—=7% or

Mo Mc g
RNFENET Sra

Mc g

(28.6.19)

I=

w

1
™ @ @ @ O
o.oooc

This eigenvector describes a vibration where both the oxygen move to the right and the carbon move more to the
left, in such away that there is no center of mass motion.

19
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The normal modes of motion provide a complete, independent set of vibrations from which any other vibrationis a
linear combination.

20



