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Lecture 28-30 - Solution of a System of Linear Equation

28.1 Why isit important to be ableto solve a system of linear equations?

Many of the phenomena observed in science and engineering can be described by linear equations. The
vibrational modes of a crystalline material, and the equilibrium of a multicomponent-multi-reaction vessel are just
two examples of problems that give rise to systems of linear, algebraic equations.

Of course, there are many systemsthat are intrinsically nonlinear. For example, material and energy
balances are both nonlinear equations. However, we begin a study of the solution of equations by focussing on
linear equations for several reasons

linear equations are easier to solve than nonlinear equations

more can be known about the existence and uniqueness of solutions for linear equations than can be
known for nonlinear equations

by observing the behavior of solution techniques for linear equations, we may get an idea about how
solution methods may work or fail for nonlinear equations

there is a tremendous amount of theory of linear algebra, which provides insight into the solution of
special systems. symmetric matrices, sparse matrices, banded matrices, repeated solutions, etc.

28.2 Linear Algebraic Equations

An equation islinear if the unknowns in the equation appears as sums or differences. If theiris
multiplication, division, or any transcendental function of the unknown, then the equation is nonlinear.

example of alinear equation:
2x+5=0

example of nonlinear equations:
2x%> +5=0
2log(x)+5=0

A system of equationsislinear if all the unknowns appear only as sums or differences.

example of a system of 2 linear equations:
2X1- 3X5 +5=0
2X1- 3Xx5 +5=0

example of a system of 2 nonlinear equations:
2sin(x1)- 3x, +5=0
2X1X2 +5=0

If any one equation in the system is nonlinear, then the system is considered nonlinear.

28.3 Converting systems of linear equationsinto matrix notation

We will find that it conserves space to write systems of equations in matrix notation. For the general
system of n linear equations with n unknowns, X1, X5, X3...Xpy, we can write:
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allxl + a12X2 + al3x3 +...+ aln_ 1Xp-1t alan = bl
apiXq tagpXp +ap3Xg ...t ayn.1Xp.1 taznXy =bo
aniX1 +an2Xp +an3Xz ...+ ann-1Xp-1 + nnXn = by

The a' s and b's are constants. Each a has two subscripts. The first subscript on aindicates the equation it appears
in. The second subscript on aindicates the variable it appearsin front of. Each b has one subscript, indicating
which equation it appearsin.

This system of linear algebraic equations can be written in matrix notation as:

Ax=Db

where é isamatrix of sizenxn, X isavector of sizenx1 and b isavector of size nx1. Specifically,

a1 ajp .. @l éxyu eby

é G a g) G

a . Aoy oY v

p=&21 822 - fang o g2g =20
= g: : . l:l e-u e: u
é u é u & U
€@nl an2 --- apnQ n g’nﬂ

An example. The system of 2 equations and 2 unknowns,

2X1+4X2 =0
- 3X1+9X2 =8

can be written as:

€2 4wexqu_du
¢ _
&3 oteon B0

Any system of linear algebraic equations can be converted to matrix form.
28.4 Extending ordinary algebrato linear algebra
Say we have the system of 2 linear equations:

a11Xg +agpXo =bg
apiX1 tap Xy =by

If we want to solve these equations using traditional algebraic techniques. Weisolate X4 in equation 1, and
substitute it into equation 2. Then solve for X5 in equation 2.
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by, - a;ox
X1 = -1 91272 (1) (solve equation 1 for Xq)
al_—]_
by - ajox
asy % +ay Xy =by (2) (substitute X; into equation 2)
11
b, - a;ox
ap 22 va,,%, =b, (3) (solvefor X5)
al_—]_
b aiby
27 a ayqbo - asqb
Xo = L - = 112 211 (4) (solvefor X»)
8322 _ a2 0 lriazz - azganz)
é ' a1 g
b a ayqb, - ar4b
Xy = —L - L2 G172 " 921 (5) (solve (1) for Xq)

a1 agg (31132,2 - a2,1611,2)

The problem with this technique of substitution isthat it takes along time as the number of equations increase.
We need a quicker, more methodical approach to solving systems of linear algebraic equations.

We can write our original equations in matrix notation as:

éa17 ajplexil_€by
€. ue, u—¢
€21 a220eX2u 332

[ ey e

AXx =D

We define an inverse matrix, é 1, which is the same size as the matrix é , hamely 2x2 in this case, which has
the property:

where I is caled the identity matrix and is defined as:

e 0 0 0y
u

|:§ 10 o@
© 0 . ou
0 0 0 1



ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 5/29/98 (updated 03/01)

The size of I isthe same asthe sizeof A . The most important property of the identity matrix is that multiplying

amatrix or vector by I yields the original matrix or vector:

b =

len

é:

(p=
1>

If we had this magical creature called an inverse then we could solve the system of equations easily:

Ax=Db

A Ax=A"D
x=A"1b
x=A"p

Thus we would have the vector of solutions, X. So...we need to know how and when we can compute inverses.

28.5 Determinantsand inverses

The inverse only exists for square matrices. (That is the dimensions of the matrix are n by n.)

The first time we calculate an inverse, we will use what is called Naive Gauss Elimination (NGE). In
NGE, we use three elementary row operations. These elementary row operations are

rowl=cxowl (multiplication of arow by a constant)

row 2 =axow 1+b xow?2 (replacement of arow with alinear combination of that row
and another row)

row 2 « rowl (swapping rows)

Under certain conditions, NGE alows usto find the inverse. For a 2x2 matrix, the procedure for finding the
inverse is given below:

STEP ONE. Write down theinitial matrix augmented by the identity matrix.

€a;; app|1 OU
é a
g1 apxp|0 1y

STEP TWO. Using elementary row operations, convert é into an identity matrix.

ROW1
ay

(l) Putalin all, ROW1=
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a
1 12 /]/ 0
All a

21 agp | 0 1

e eny en Y end

(‘%:SD) D> D~

(2) Put zeroesin al the entries of COLUMN1 except ROW1, ROW2 = ROW?2 - a,;ROW1

317 }/ 0

a1 a1
ansqa _any

ap - 21 1%11 All 1

CDKBCD CD|>_‘CD\
oo

ROW?2

ara
822 - "4 1%11

(3) Putaonein a,,, ROW2 =

D:D (BCD)f_D‘) D D
Q
'_\
N
Q
'_\
'_\
Q
N
'_\
NN
'_\
'_\
|_\
[ el e el e\ el ent?

(4) Put zeroesin al the entries of COLUMN1 except ROW2, ROW1 = ROW1- aﬁROWZ
al

e _ang 0 e
}/ ajp ¢ VT 1
a1 a ayap/ - a az1812
0‘ Az - By o EA2 ary
1

_an
aiq 1
ad-sqa adoia
az2 - "% 1%11 az2 - "% 1%11

which can be simplified as:

coco o SE L

oo D D 8 CD;_C‘D> D> D> D~

é ay - a1 u

G
21 Olajjagy - aga1p  aygapp - axdyo G
@0 1 -an an a
g aji@pp - az1dip  a11dp - a1d12
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Here we have converted the matrix on the left hand side to the identity matrix. Asaresult the identity matrix that
was originally on the right-hand side is now the inverse of A, é 1.

This inverse can be rewritten as

1_ a1 €azpy -apu_ 1 éeapxp -apl
A= é g= & a (28.21)
411822 - a1812 & d21 11 0 det é) € a1 a1 u

where the determinant of é (a2x2 matrix), det@), isgiven to be:

det@) =ajjagy - 421812

We can learn several things about the inverse from this demonstration. The most important thing is:

If the determinant is zero, the inverse does not exist (because we divide by the determinant to obtain the
inverse.) A matrix with adeterminant of zero is called singular. A matrix with a non-zero determinant is called
non-singular.

Never calculate an inverse until you have first shown that
the determinant is not zero.

We can check that thisis the correct inverse by substituting é 1 into

and verifying that we obtain the identity matrix.

For a 3x3 matrix,

é1; a;p a3

_eé a

As = @21 822 8y (28.18)
€31 az2 assf

the determinant is

detE3)= ay1(agoass - agpazs)+
a1p(apsazs - agzaz)+

(28.19)
a3 (321332 - 331322)

NGE can be applied to any mxm matrix with a non-zero determinant. A clean formula like equation
(28.20) is not available for m > 2. Even for m = 3, the analogous formula tends toward the gruesome. (See the
appendix for the complete derivation.)
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. 1 €appags - agpdpz - ArpaAzgz tagzgra1z  appapg - a3 U

1 é a
Ag = d_t@)_é' agjazz tazidrz 411833 - 31813 - a11823 ta@21313 (28.24)

e x i

3/ gapjagzy - agj@zy - arjagy tagjajy  ajjapy - a@12 H

For larger matrices, we generally turn to computers to calcul ate the determinant and inverse for us.

28.6 Rank and Row Echelon Form

We need to introduce a couple additional quantities before we get around to using the inverse to solve
Ax=b.

We say that a matrix isin Row Echelon Form when all elements below the diagonal are zero. This
notation is also called an upper triangular matrix. Starting with the matrix é3 , we perform elementary row

operations on the matrix until the we zero out the required elements.

éa1; ajp ajzu

1>
®

— a
3= (27'121 a2 323@
831 azz2 assf

ROW2 = ROW1- 2L Row?2

an
a
ROW3 =ROW1- Z11Row3
asz;
e u
é 1
11 aiz ai3 a
_é aii aii !
Us; =20 app-_——axp a3-_——azy
< az azy 2
g a1y ary l'J
€0 ajpp-—-azx; ajz- ——azzlU
e aza az; 8|
1
ap - a az
ROW3 = ROW?2 - 2l Rows3
1
ap - aszp
az;
Simplification yields:
i1 aip a3 u
e a u
U;=€0 ajp- —=azp az- “la,st
g 21 ?tl ) E
g 0 0 det A3 i
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The rank of A isthe number of non-zero rows in the matrix when it is put in row-echelon form. Therank of A is
also the number of independent equationsin A.

If the determinant of the matrix is non-zero,we see that the rank of an nxn matrix is n.

&l;; U, Ul

- € u
U=50 Uxp Uxgy
g0 0 usy

If the determinant of an nxn matrix is zero, then the rank(An) islessthan n.

9\

11 Up Uzl

c

@D D> D>

U
0 Up Uxpy
0O 0 O0f

Non-sguare matrices can also be put in row echelon form. Consider an nx(n+1) matrix of the form:

2311 ajp a3 blg
C=@o1 axp apslbyy
§a31 aszpy asz|bsj

Again, by performing elementary row operations, we reduce this matrix to an upper triangular form,

ngl Uip U3 Vlg
U=g0 up upzlvyy
80 0 U33 V3H

The rank of this matrix is still defined as the number of non-zero rows in the row echelon form of the matrix.
The rank of the following matrix is three.

ngl Uip U3 Vlg
U=g0 up upslvay
§0 0 0|vaf

The rank of the following matrix is two.

@17 Upp Upg|viU
0 a
Uzo U23|V2y

0 0 00§

g:

D> D> (D
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If amatrix has some non-zero rows, then it means that some of the equations were linearly independent. Consider
the matrix below.

e ap ajp a;z U
_é a
A=g ax a2 a3

fajg +kapyy cajp +kapy cajz +kapsf

We can clearly seethat Row 3 =c*Row 1 + k*Row 2. Row 3isalinear combinations of Rows 1 and 2. If we
perform elementary row operations on é to put it in row echelon form, then we will find that there are two non-

zerorows. Thustherank is 2, the number of independent equations.

At this point we can identify some logically equivalent statements about an nxn matrix, A . If any one of
these statements is true, all the others are true.

If and only if det(A)* O - Ifandonly if det(A) =0
then inverse exists - theninverse does not exist
then A isnon-singular - then A issingular
then rank(A) =n - then rank(A) <n
then there are no zero rows in the row - thenthereisat least one zero row in the row
echelon form of A echelon form of A
then AX =D has one, unique solution - then AX =D has either no solution or
infinite solutions
all eigenvaluesof A are non-zero
o at least one eigenvalue of A is zero

28.7 Existence and Uniqueness of Solutionsto ég =b

We now have all the tools we need to solve ég =b. Before wework any examples, we need to know

beforehand how many solutions we can obtain for a system. In dealing with linear equations, we only have three
choices for the number of solutions. We either have O, 1, or an infinite number of solutions.
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No Solutions:
rank(A) <n and rank(A) <rank(Ab)

One Solution:
rank(A) = rank(A[b) = n

Infinite Solutions:
rank(A) =rank(Ajp) <n

Consider each case.

When ran k(é|Q) >rank(A), your system is over-specified. There are no solutions to your problem.

When ran k(é|Q) =rank(A) =n, you have aproperly specified system with n equations and n unknowns and

you have one, unique solution.

When rank(é|g) =rank(A) <n, then you have less equations than unknowns. You can pick N - rank(A)

unknowns arbitrarily then solve for the rest. Therefore you have an infinite number of solutions.

We will work one example of each case below.
Example: One Solutionto AX =Db

Let'sfind
(a) the determinant of A

(b) theinverse of A
(c) the solution of AX = by
(d) the solution of AX = b,

where
e 13 e
_€e u _eu _ u
é_él 2 1@ Ql—:: QZ‘%OQ
gl 1 1y el &4

(8) The determinant of A is (by equation 28.19) det@) =-1

(b) Because the determinant is non-zero, we know there will be an inverse. Let’sfind it.
STEP ONE. Write down the initial matrix augmented by the identity matrix.

10
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€ 1 31 0 ou
e u
gl 2 10 1 04
& 1 10 0 1f

STEP TWO. Using elementary row operations, convert é into an identity matrix.

ROW1 _ROWI1

DPutalin a4, ROW1=
@ 1 arg 2

@ 1/2 3/21/2 0 0u

& 2 1|0 1 og
@& 1 1/0 0 1y

(2) Put zeroes in all the entries of COLUMN1 except ROW1,
ROW2 =ROW2 - a,yROW1=ROW2- ROW1

ROW3 = ROW3 - a3;ROW1=ROW3- ROW1

é 1/2 3/2[1/2 0 Ou
9D 3/2 -12-12 1 0
@0 1/2 -1/2-1/2 0 1Y

ROW2 _ROW?2

3)Putalin s, ROW2 =
3) 22 aso 3/2

& 12 3/2|1/2 0 ou
9 1 -u3-13 2/3 oy

@ 1/2 -1/2-1/2 0 1f

(4) Put zeroes in all the entries of COLUMN2 except ROW?2,
ROW1=ROW1- a;,ROW2 =ROW1- 1/2*ROW?2

ROW3 = ROW3- ag,ROW2 = ROW3- 1/2*ROW2

D~

1 0 5/3[2/3 -1/3 Ou
1 -13-13 2/3 0
0 -1/3-1/3 -1/3 1f

%) %CD)

ROW3 _ROWS3
aszs -1/3

(5) Putalin 8.33, ROW3 =

11
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é 0 5/3[2/3 -1/3 0U
9 1 -v3-13 2/3 04
0 0 1] 1 1 -3§

(6) Put zeroes in all the entries of COLUMNS3 except ROW3,
ROW1=ROW1- a;3ROW3 =ROW1- 5/3*ROWS3

ROW2 =ROW2 - a,3ROW3 = ROW2 +1/3*ROW3

é 0 0-1-2 50U
9 100 1 -1
@ 0 11 1 -3§
SO

&1 -2 5u
-1_¢8 u
AT=g0 1 -1y

g1 1 -3§

() Thesolutionto AX =bpis X =A" 1Q1

&1l -2 50 é2u
_é Beu_é-u
X=g0 1 -lgh=ely

gl 1 -3glY e 1y

(d) Thesolutionto Ax =h, isx = A" b,

&1 -2 500 é8u

e a_é ,a

(:eo Lo 1@u & 24

el 1 -3p2H & 44

We see that we only need to calculate the inverse once to solve both ég = 91 and ég = lgz . That'snice
because finding the inverse is alot harder than solving the equation once the inverse is known.

Example: No Solutionsto AX = b

& 1 3y éll
e u —_6u
A§121@Q1—gj.@
8 3 4 eld

12
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det(é) =0

The determinant is zero. No inverse exists. To determine if we have no solution or infinite solutions find the
ranks of A and Alb. Inrow echelon form, A becomes:

€ 1 30

_ a
Ua ‘go -3 1@
&0 0 0g

so the rank(é) =2

In row echelon form, Alb becomes:

@ 1 314

_ u
gAlb_go -3 1-14
o 0 0- 2§

Example: Infinite Solutionsto AX = b

Consider the same matrix, é , aswas used in the previous example. The determinant is zero and the rank is 2.
now consider a different b vector.

(=2
N
I
TR R
[ oy eny eny end

Reduce the é|Q matrix to row echelon form.

Unip =

0
In this case, rank(A | b)= 2.

Since rank(A) = rank(é|g) =2 <n = 3, there are infinite solutions.

13
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We can find one example of the infinite solutions by following a standard procedure. First, we arbitrarily
select N - rank(A) variables. In this case we can select one variable. Let’smake X3 =0.

Then substitute that value into the row echelon form of Alb and solve the resuilting system of rank(A)
equations.

€ 1 3 1u
_ u
2A|b-§° 3 11u
O 0 00}
When X3 =0
€ 1 01u

Now solve a new ég =Db problem where A and b come from the non-zero parts of g A

b
€ luexju_eéelu

=eé
O -3 & 1

This problem will always have an inverse.

gxlg_(? 3li|
u=z17-
g(ZU 3H

28.8 Eigenvalues and Eigenvectors

See Linear Algebra Appendix

28.9 Example Applications

See Linear Algebra Applications Packet

14
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Summary of basic MATLAB commands for Linear Algebra

Entering a matrix
A=[all, 12; a21, a22]

(commas separate elements in a row, semicolons separate rows)

(easiest for direct data entry)

A=[ all
a2l

al2
a2?2]

(tabs separate elementsin arow, returns separate rows)

(useful for copying data from atable in Word or Excel)

Entering a column vector

b=[ b1; b2; b3]

(an nx1 vector)

Entering arow vector

b=[ b1, b2, b3]

(a 1xn vector)

determinant of a matrix

det (A)

(scalar)

rank of a matrix
rank( A)

(scalar)

inverse of an nxn matrix

i nv(A)

(nxn matrix)

transpose of an nxm matrix or an nx1 vector

A=A

(mxn matrix or 1xn vector)

solution of Ax=b
x=A\b or x=inv(A)*b

(nx1 vector)

reduced row echelon form of an nxn matrix

rref (A

(nxn matrix)

elgenvalues and eigenvector of an nxn matrix

[w, | anbda] =ei g( A)

(w isan nxn matrix where each column is an eigenvector,
lambda is a nxn matrix where each diagonal element is an eigenvalue, off-diagonals are zero).
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