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Lectures7 - Mathematical Expectation
Text: WMM, Chapter 4. Sections4.1-4.3

M ean

The “mean” is another name for the “average”. A third synonym for mean is the
“expected value”.  (Definition 4.1, p. 85) Let x be arandom variable with probability
distribution f(x). The mean of x is

m, = E(x) = Q xf(X) (7.1a)

if X isdiscrete, and
¥
m, =E(x) = @(f(x)dx (7.1b)
-¥

if X is continuous.

Example 7.1: You al may be pretty upset that | suggest that the complicated formulae
above give the average when you have been taught since elementary school that the average is
given by:

18
m=—aX

i=1

where you just sum up al the elementsin the set and divide by the number of elements. Well, let
me reassure you that what you learned in e ementary school isnot wrong. Thisformula aboveis
one case of equation (7.1) where the probability distribution, f(x) = 1/n. (Thisiscalled auniform
probability distribution.) Since f(x) is not afunction of X, it can be pulled out of the summation,
giving the familiar result for the mean. However, the uniform distribution is just one of an infinite
number of probability distributions. The genera formulawill apply for any probability
distribution.

Mean of a function of x
Equation 7.1 gives the expected value of the random variable. In general, however, we

need the expected value of afunction of that random variable. In the general case, our equations
which define the mean become:

My = E(h(X)) = & h(x)f(x) (7.2a)

if X isdiscrete, and
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My = E((X)) = Gux)F(x)dx (7.2b)

if x is continuous, where h is some function of x. Y ou should see that equation (7.1) is the case of
equation (7.2) where h(x)=x. Thisisone kind of function. However, thereis no point in learning
aformulafor one function, when the formulafor all functionsis at hand. So, equation (7.2) isthe
eguation to remember.

Example 7.2 (4.2 from WMM, p. 86): In agambling game, three coins are tossed. A man
is paid $5 when al three coins turn up the same, and he will lose $3 otherwise. What is the
expected gain?

In this problem, the random variable, X, isthe number of heads. The distribution function,
f(x) isauniform distribution for the 8 possible outcomes of the gambling game. The function h(x)
isthe payout or forfeit for outcome X.

outcome X h(x) f(x)
HHH 3 +$5 18
HHT 2 -$3 18
HTH 2 -$3 18
HTT 1 -$3 18
THH 2 -$3 18
THT 1 -$3 1/8
TTH 1 -$3 1/8
TTT 0 +$5 1/8

We know that the probability distribution f(x) = 1/8, since there are 8 random, equally probable
outcomes. Using equation (7.2), we find:

8 ” 8
Mo = a h)f(x) = a h(x)é;‘elgzié h(x):1(5- 3-3-3-3-3-3+5)=-1
x i1 e8g 8 4 8

The average outcome is that the gambler loses a dollar.

Now you can do this same problem another way and make the distribution over the number of
heads rather than all possible outcomes. In this case, the table looks like:

outcome X h(x) f(x)
HHH 3 +$5 1/8
HHT,HTH,THH 2 -$3 3/8
TTH, THT, TTH 1 -$3 3/8
TTT 0 +$5 1/8

Then using equation (7.2) again, we find:
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oo = 8000100 = & 100100 = JB)3 +( 303 +(- 93 + B) =1

In fact there are other ways to define the problem. Choose a distribution that makes sense to you.
They will al give the same answer so long as your distribution agrees with the physical reality of
the problem.

Mean of afunction of x and y (Definition 4.2, p. 89)
Equation 7.2 gives the expected value of afunction of one random variable. This equation
can be simply extended to a function of two random variables.

My =ENM(XY)) = A & h(x y)f(xy) (7.33)

if x and y are discrete, and
¥ ¥
My = EM(XY)) = 0G (% y)F(x, y)dxdy (7.30)

-¥-¥

if x andy are continuous. Y ou should see that equation (7.3) is entirely analogous to equation
(7.2).

Example 7.3: Given the joint probability density function

f(x y):'¥§(2x+3y) forOEXE£10£y£1
0 otherwise

find the mean of h(x,y) =.

Using equation (7.3b) we have
¥ ¥ 11 .
<~ . 2x+3y)o
Myxyy = E(XY)) = o Y)F(X y)dxdy =oo/g% ;:dedy
S¥-¥ 00
11 .. 1 x=1 1
L a2(2x +3y)6 20 1 "2 ,
) = ———=7xdxdy = yx< +3y“x] dy= y + 3y“ dy
Mhixy) gp’ g 5 o ?g ( ~ g)g ( )j

y=1
2a% ¢ 2  ,6_ 6
=26 +y3d =S8 +17=
rT}](ny) 5 g 2 y %yzo 5 82 g 10

What this saysis that the average value of y for thisjoint probability distribution function is 0.6.
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Variance

The mean is one parameter of a distribution of data. It gives us some indication of the
location of the random variable. It does not however give us any information about the
distribution of the random variable. For example, the mean of h(x)=x tells us:
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where adistribution like thisis centered but it does not tell us the shape of the distribution:
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These three probability density functions (PDFs) have the same mean but have different shapes.
In one of these, the distribution is much more closely gathered around the mean. In the other
two, the “spread” is greater. The variance is a statistical measure of this spread.
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(Definition 4.3, p. 93) Let x be arandom variable with PDF f(x) and mean m.. The
variance of x, %, is

52 =Elx- mP] =& (x- m)10 (7.43
if X isdiscrete, and
s? :E[(x- mﬂ: X - m)?f(x)dx (7.4b)

if x iscontinuous. Y ou should see that equation (7.4) isjust another case of equation (7.2) where
h(x) = (x- m) 2. What the variance givesis “the average of the square of the deviation from the
mean”. The sguareisin there so that al the deviations are positive and the variance is a positive
number.

Sometricks with the variance:
¥
s2 :E[(x- m)z]z X - M F(x)dx
-¥
¥ ¥ ¥
= O<F()dx - ARxnf(x)dx + ¢yrif(x)dx
-¥ -¥ -¥

= ¥c‘)\(zf(x)dx - 2mz‘y(f(x)dx +nf z‘j(x)dx

=Ex2:- 2nE[x] + nf
=E|x*|- 2nf +nf
=E|x*|- nt =E[x2]- Elx]?

s? =g[x?] - E[xJ? (7.5)

People frequently express the variance as “the difference between the mean of the squares and the
square of the mean” of the random variable x. They do this because sometimes, you have E[xz]

and E[x] so the variance is much easier to calculate from equation (7.5) than it is from equation
(7.9).

Example 7.4: Calculate the mean and variance of the discrete data set of 10 numbers
containing {1,2,3,4,5,6,7,8,9,10} .
The mean is calculated from equation (7.3a), where the probability distribution is uniform, i.e.,
f(x) =1/n. Som=5.5.
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The variance is calculated by squaring each number in the set so that you have a new set of X?
containing { 1,4,9,16,25,36,49,64,81,100} . Then the mean of this set of numbers (using equation
(7.38)) is 38.5. Now using equation (7.5), we have:

s? =E[x?]- E[x]* =38.5- (5.5) =8.25

The variance is always positive. If you don’t get a positive answer using this formula then you
have most certainly done something wrong.

War ning on using equation (7.5), the shortcut for the variance

The equation 7.5 may look very friendly but it comes with dangers. Y ou often use this
equation to obtain a small variance from the difference of two large numbers. Therefore, the
answer you obtain may contain round-off errors. Y ou need to keep all your insignificant figures
in the averages in order to obtain the variance to the same number of significant figures.

Example:

Uses® = E[xz] - E[x]? to obtain the variance of the following 10 numbers, using f(x) =
1/10.

s=[9.92740197834152
10.06375116530286
9.98603320980938
10.07806434475388
10.04698164235319
10.03746471832082
9.96922239354823
9.93320694775544
9.93112251526341
9.93822326228399]

Below we give atable that reports the means and variance for keeping different number of
significant figures:

4 sig figs: mu_s = 9.990000000e+000 mu_s2 = 9.983000000e+001 var_s = 2.990000000e-002
5dgfigs mu_s=9.991000000e+000 mu_s2 = 9.982600000e+001 var_s = 5.919000000e-003
6 sgfigs mu_s=9.991100000e+000 mu_s2 = 9.982630000e+001 var_s = 4.220790000e-003
7 9gfigs mu_s=9.991150000e+000 mu_s2 = 9.982626000e+001 var_s = 3.181677500e-003
8 dgfigs mu_s=9.991147000e+000 mu_s2 = 9.982626500e+001 var_s = 3.246624391e-003
9dgfigs mu_s=9.991147200e+000 mu_s2 = 9.982626470e+001 var_s = 3.242327932e-003
10 sgfigs: mu_s=9.991147220e+000 mu_s2 = 9.982626473e+001 var_s = 3.241958286e-003
al sg figs: mu_s=9.991147218e+000 mu_s2 = 9.982626473e+001 var_s = 3.242000540e-003
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Y ou can see that when we only keep 4 significant figures, our calculated variance is off by 822%!
Y ou need to keep additional significant figures in the mean and the mean of the squares in order
to get the variance with any accuracy.

For your information, here is the entire Matlab code that | used to generate the data in this
example:

n=10;

r = rand(n,1);

s =10 + 0.1*(2*r - 1)

s2 = 5.2

f =1/n

format | ong

mi_s = sun(f*s)

mu_s2 = sun{(f*s2);

var_s = nmu_s2 mu_s”2

for i = 2:1:8
mu_s_cut (i) = round(nu_s*(107i))/(10"i);
mu_s2_cut (i round(mu_s2*(107i))/ (10"i);

i

_ ) =
var_s_cut(i) = mu_s2 cut(i) - mu_s_cut(i)"2;

fprintf(1,"% sig figs: mu_s = %6.9e nmu_s2 = %46.9e var_s = %46.9e\n",
i+2, mu_s_cut(i),mu_s2 cut(i),var_s_cut(i));
end
fprintf(1,"all sig figs: mui_s = %6.9e nmu_s2 = %46.9e var_s = %46.9e\n",
mu_s, nu_s2, var_s);

Standard deviation

The standard deviation, s, is the positive square root of the variance, s

Example 7.5: Calculate the standard deviation of the discrete data set of 10 numbers
containing {1,2,3,4,5,6,7,8,9,10}. We calculated the variance in the example 7.4 above. The
standard deviation is the square root of the variance

s =+/s? =./8.25 = 2.872281323

The standard deviation gives us a number in the same units as the random variable X, which
describes the spread of the data.

Variance of a function of x
(Theorem 4.3, p. 96) Let x be arandom variable with PDF f(x). Let g(x) be afunction of

X. We know that the mean of g(x) is, and mean my, from equation (7.2). The variance of a
function g(x), is

S g0 :E[(Q(X)' mm)z] = & (009 - my J1(x) (7.6a)

if x isdiscrete and
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Sg0 = E[(Q(X)- ”L(x>)2]= I(X) - My ) F(x)dx (7.6b)

if x iscontinuous. Y ou should see that equation (7.6) isjust another case of equation (7.2) where
the function of the random variable is h(x)=(g(x)- myy) >. Asin the case where the function was
h(x)=(x-m?, (in equation (7.4)), equation (7.6) can also be reduced to a second form:

S ) :E[Q(X)z] - Elg(x)F (7.7)

Beware: we have defined 3 functions, f(x), g(x), and h(x). f(x) isthe probability distribution.
g(x) isthe function of the random variable that we would like to know about. h(x) is the function
that we feed into equation (7.2) so that we can get the variance.

In other words, if h(x) = (g(X)- n’b(x)) then Sg(x) Mhex) -

Example 7.6: Given the joint probability density function

NG
f(x) = IL? for-1<x<2
fo

otherwise

find the variance of g(x,y) = x™.
We will use equation (7.7). To do so we must findE[g(x)z] and E[g(x)] : E[g(x)] is
the mean of g(x) and can be calculated from the formula for the mean, equation (7.2).

My = E(9(X)) = p(x)f(x)dx (7.2b)
.. xX=2
E(X-l): i‘)}(-la(—zgdx :ﬁ :Z_Z_ﬁzi
1 5 6 6 6 2

Then we substitute into equation (7.7)

alw

Sqw = E[Q(X)Z]' Elg(x)]F =1- E%Lg =
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Variance and Covariance of a function of x and y
By anaogous methods, we can extend the variance definition to a function of two
variables.

Sqxy) = E[(g(x,y) - ”'b(x,y))z] =a a (g(x, y)- ”'b(x,y))zf(x’Y) (7.84)

if x and y are discrete and

Squy = E[(Q(X’Y)' ”L(x,y))z]: OGI(X,Y) - Myyy) (X, y)dxdy (7.8D)

if x and y are continuous. Y ou should see that equation (7.8) is just another case of
equation (7.3) where the function of the random variable, let’s cal it h(x,y)=(g(X,y)- M) >
Again, equation (7.8) can be rewritten

SS(XYY) = E[g(X,y)z] - E[g(X,y)]2 = rr}](x,y) (79)

Now, let’s think about equation 7.8. If g(x,y)=x, then h(x,y)= (x- m) ? and we calculate the
variance of x from equation (7.8). If g(x,y)=y, then h(x,y)= (y- m) * and we have the variance of y
from equation (7.8).

Now, if h(x,y)= (x-m)(y- m), then we can use equation (7.8) to calculate the
COVARIANCE, sxy. Beware, the covariance has the units of variance even though it does not
have the squared sign after it. Also beware there is no function g(x) defined for the covariance, so
equation (7.9) does not apply. But if you substitute h(x,y)= (x-my)(y- m) into equation (7.2) and
solve as we did to arrive with equation (7.5) you find:

s = Elxy]- EXEly] =m,, - mm, (7.10)

The qualitative significance of the covariance is the dependency between variablesx and y.

Sy qualitative significance
S,y >0 as X increases, y increases
Sy =0 x and y are independent
Sy <0 as X increases, y decreases

Example 7.7: Given the joint probability density function
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’I[ (2x+3y) for0OEXE10Ey£1

otherwise

f(x,y) =

—>:
oOulN

find the covariance of x and y.
To find the covariance, we need: E[xy], E[x], and E[y] . Wedready calculated E[y] in

example From example 7.3 and we found E[y] =0.6. Using asimilar procedure, we calculate, the
expected value of X, E[x]

E[x] Ooxf(x y)dxdy = CDXM—dxdy

In an analogous fashion,

11 L.
E[xy] O(yf(x y)dxdy —cxy(yBGM 9dxdy

-¥-¥

x=1
2y a&@x°® x2 ¢ 'o2ya® 3y
E[XY]:Ogy 3 +3y?% Y y*dy

0 x=0 0

2a9y? 3y°Q  _1a@ 36 1
E[xy]:ggg + )6/3 = 9
=0

S0 using equation (7.10), we find:

1 17 6 _100-102 _ 1
« =Elxy]- E[x]E[y]—g- 010" 300 " 1sg 000667

Correlation Coefficient
The magnitude of sxy does not say anything regarding the strength of the relationship
between x and y because sxy. depends on the values taken by x andy. A scaled version of the

10
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covariance, called the corrdation coefficient is much more useful. The correlation coefficient is
defined as

(7.11)

This variable ranges from -1 to 1 and is O when sxy iS zero. A negative correlation coefficient
means that when y increases, x decreasesand viceversa. A positive correlation coefficient
means that when x increases, y aso increases, and vice versafor decreasing.

My qualitative significance
Mxy = X=y

Sy >0 as x increases, y increases
Syy = x and y are independent
Sy <0 as X increases, y decreases
Ny =-1 X=-y

Example 7.8: Given thejoint PDF in example 7.7, find the correlation coefficient and
make a statement about whether x is strongly or weakly correlated to y, relative to the variance of

x andy. To do this, we need the variance of x and y, which means we need E[xz] and E[yz]

¥ ¥ 11
E[X2]= OOK*f(x, y)dxdy = CY)“ZM

<dxd
S¥-¥ 5 a y
25 ] 1‘288(4 N dy = 2 & +y Gy
' x=0 (9582 (%]
P A 2&1 1 )
: 0_
E[X gZ 3 _EeE 2@ E
y=0
SO
% =Epe]- el —3- é;aé‘—79 =0.0789
Now for y:
¥ ¥ 11
E[y2]= O, Y)f(x,y)dxdy = C‘I‘YZBGM Qdxdy
-¥-¥ a

11
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L1 a2(2x +3y)s L2 k2

Ely?|= 2" dxdy = y2x2+3y3x1 dy =¢y=ly? +3y° dy

bl S =g o] ol arh
2a@° 3y*d 2 3613

E[yz]:—§1—+ y 3 & 20_1°
5&3 4 0 5e3 4g 30

o)
2 _ 2| 2_13_%69_
s2 =Ely?]- Ey] s E22 =00733

s0 the correlation coefficient is

_ Sw . -0.00667
s,Sy /0.0789+/0.0733

=0.0877

rXY

The small value of the correlation coefficient indicates that the random variables x and y are not
strongly correlated.

Means and Variances of linear combinations of Random Variables

These are several rules for means and variances. These rules have their basis in the theory
of linear operators. A linear operator L[x] performs some operation on x, such that:

L[ax + by] = aL[x] + bL[y] (7.12)

where x and y are variables and aand b are constants. Thisis the fundamental rule which all
linear operators must follow.

Consider the differentia operator: L[x] = %[x]. Isit alinear operator? To prove or
disprove the linearity of the differential operator, you must substitute it into equation (7.12) to
verify it.

d > d d
—[ax +by]=a—[x] +b—
Olt[ yl p [x] p [y]
d d > _d d
—[ax]+—[by]=a—[x] +b—
Olt[ ] Olt[ yl Olt[X] Olt[y]
a%[x] +b%[y] = a%[x] +b%[y] Thisisan identity.

So, we have shown that the differential operator is alinear operator. What about the integral
operator, L[x] = oxdt?

12
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JJax +byldt =agydt +b¢ydt
Cpxdt + cpydt=agydt +beydt
agydt +bgydt=agyxdt +bgydt Thisis an identity.
So, we have shown that the differential operator is alinear operator. What about the square

operator, L[x] = x*?

[ax +by]* =ax® + by
a?x? + 2abxy +by? =ax? + by?

a(1l- a)x* +2abxy +b(1- b)y?=0

we can use the quadratic equation to solve for x:

- ab#,/a’?- a(l- a)b(l- b)y’
- a(l- a)

For any given value of y, the solution to this quadratic formula are the only solutions which satisfy
eguation (7.12). In order for the operator to be linear, equation (7.12) must be satisfied for all x.
Therefore, the square operator is not alinear operator.

Now, let's seeif the mean is alinear operator (we will do thisjust for the continuous case, but the
result could also be shown for the discrete case):

E[ax +by] =aE[x] + bE[y]

Substitute in the definition of the mean from equation (7.1)

¥ ) ¥ ¥
gax +bylf(x)dx =a oxf(x)dx +b cyf(x)dx
- ¥ -¥ -¥

Theintegral of asum isthe sum of the integrals. Constants can be pulled outside the integral, so

a Oxf(x)dx +b yf(x)dx = a Oxf(x)dx +b yf(x)dx

Thisisan identity. The mean isalinear operator. Asaresult, we have afew smplifications for
the mean. In the equations below, we assume that a and b are constants.

13
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E(@)=a

E(ax +b) =aE(x) + b (Theorem 4.5, p. 101)
E(g(x) £ h(x)) = E(g(x)) + E(h(x)) (Theorem 4.6, p. 102)
E(a(x,y) £h(x,y)) = E(9(x,y)) + E(h(x,y)) (Theorem 4.7, p. 104)

If and only if x and y are independent random variables, then
E(xy) = E(X)E(y) (Theorem 4.8, p. 104)

We can show that the variance is not alinear operator. However, by substituting in for the
definition of the variance, equation (7.4), we can come up with several short-cuts for computing
some variances of functions. Again, we assume that a and b are constants.

s;=0
s2,, =a’s? (Theorem 4.9, p. 106)
Si.py —a’s;tb’s] +2abs, (Theorem 4.10, p. 106)

If and only if x and y are independent, then

Si.by —a’s; th’s}

ax +by

Proof of theorem 4.10.

We did not just make any of these theorems up. They can all be derived. In order to derive
theorem 4.10, we begin by direct substitution of (ax+by) into the definition of the variance:

¥ ¥
Sqrxy) ° E[(g(x,y)- mg(x,y))z] = OFIXY) - My ) F(x,y)dxdy
-¥-¥
¥ ¥
S2,y) = OCfax +by - M., ) f(x,y)dxdy

-¥-¥

¥ ¥
Sy = OC@°X” +b%y® +2abxy - 2aXm,, .y, - 2bym,,,,, +My,.,, " )f(X, y)dxdy
-¥-¥

14
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¥ ¥ ¥ ¥
00';1 2*f(x,y)dxdy + Py *f(x,y)dxdy + OO’Zabxyf(x y)dxdy
-¥-¥
¥ ¥ ¥ ¥

oozaxm, ., f(x, y)dxdy - oc)?byrfgx+byf(x y)dxdy + ocmxmy *f(x, y)dxdy

-¥-¥
¥ ¥ ¥ ¥
Sey =@ OOCT(x,y)dxdy +b? Ocyzf(x y)dxdy +2ab ¢)¢yeyf(x,y)dxdy
S¥-¥ -¥-¥

¥ ¥ ¥ ¥

w

¥

- 22,0, OOK(xy)dxdy - 20, OYTxy)dxdy + M.y, ” G Y)dxcly
-¥-¥
2

sg(xy) =a? m. +b2m +2abm, - 2am, ., m - 2bm,, m +m,.
nllx-fby - arn( + bnl,
S2,y) =a’m, +b?m, +2abm_ - 2a’m’ - 2abmm - 2b°m/’ - 2abmm

+a’m’
= az(mx2 - n1(2)+ bz(myz - n1/2)+23-b(m<y i m/m()

=a’s} +b’s? +2abs

2
a(x,y)

2
S gixy)

Q.E.D.

S

+b’m,* +2abmm,

Two detailed examples compl ete this section of the course. The first exampleisfor discrete
variables and the second example is for continuous variables.

Discrete Example:
Consider the isomerization reaction:

A® B

This reaction takes place in a plant which relies on raw material solution, which unfortunately, is
supposed to have a concentration of reactant of 1.0 mol/liter but in reality varies +/- 20%.

The reactor is jacketed and is supposed to be isothermal. Day to day observation of the
thermocouples in the reactor indicates that temperature swings about 10% around its set point of

300 K.

The reaction rateis given as

r, =kC,

DH

=k.,e R°C,

where K is the rate constant, kO is the pre-exponential factor of the rate constant, DH is

the heat of reaction, R isthe gas constant, T isthe temperature, and C 4 isthe concentration of
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liters kJ
the reactant. In one such reaction, kK, =20——, DH =10——, and
min mol
J
R =8.314————. Over amonth, 20 spot measurements are made of the reactor, measuring

mol K
the concentration of the reactant and the temperature.

Consider that the probability of obtaining any of the data points was uniform. Therefore,
f(x) = % where n is the number of measurements taken.

The tabulated data and the functions of that data are shown below:

runs Ca T 1s5c,° T? rg> CaXT Coxp Tip
mol K mol
liter min
1 111 296.49 0.38 1.22 87904.81 0.15 327.92 0.42 113.49
2 1.01 272.80 0.25 1.02 74419.84 0.06 275.60 0.25 67.06
3 1.03 270.22 024 1.06 73020.02 0.06 278.42 0.25 64.96
4 0.82 324.55 0.40 0.67 105332.35 0.16 265.94 0.33 130.71
5 0.83 273.87 0.21 0.70 75006.19 0.04 228.67 0.17 56.61
6 111 274.20 0.28 123 75185.95 0.08 304.31 031 75.73
7 0.80 299.56 0.29 0.64 89733.67 0.08 239.93 0.23 86.56
8 0.84 325.13 0.42 0.71 105709.64 0.17 273.64 0.35 135.39
9 0.89 310.19 0.37 0.78 96220.00 0.13 274.75 0.32 11375
10 1.16 271.78 0.28 135 73862.15 0.08 315.23 032 7544
11 1.13 298.13 040 1.27 88878.56 0.16 336.10 0.45 11894
12 1.14 304.56 044 130 92759.55 0.19 347.10 0.50 133.77
13 1.13 270.54 0.26 127 73189.31 0.07 305.20 0.30 71.58
14 1.04 280.21 0.29 1.09 78514.87 0.08 292.34 0.30 79.93
15 1.15 306.72 046 132 94077.94 0.21 352.47 0.52 139.67
16 0.87 319.16 0.40 0.76 101864.25 0.16 277.89 0.35 128.30
17 0.83 304.60 0.32 0.68 92778.97 0.10 251.76 0.26 97.07
18 1.06 303.42 040 1.11 92064.18 0.16 320.26 0.42 121.60
19 0.83 289.58 0.26 0.69 83856.40 0.07 24111 0.22 75.75
20 0.89 301.14 0.33 0.79 90684.97 0.11 26754 0.29 98.58
sum 19.66 5896.84 6.66 19.68 1745063.64 2.32 5776.21 6.57 1984.89
mean 0.98 294.84 0.33 0.98 87253.18 0.12 288.81 0.33 99.24
variance 0.02 321.47 0.01 covariance -1.03 0.00 1.09
standard 0.13 17.93 0.07 correlation -0.43 0.14 0.83
deviation

We use the definition of the mean, m=E(x) = é xf(x), to obtain expectation values for the

X

following functions:

Ca T B C,° T? g’ CAXTCp X THg
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The expectations are shown in the table above in the row marked mean. The variancesof C 4,

T, and rg are calculated using the “difference between the mean of the square and the square of
the mean” rule.

s, =Elo(xf] - Ela()f

Those variances are shown in the first three columns in the row marked variance. The
covariances are obtained using the formula:

S, = Elxy]- E[El]

and are shown in the last three columns. The standard deviations and correlation coefficients are
given in the bottom row, obtained from:

S
- 2 - Xy
Sgx) =4/Suw adr, =

s.S,

Physical explanation of statistical results:
The mean and the standard deviation of the concentration show that statistically speaking:

c, =0.98+0.13M%
liter
oy mol
Smilaly, T=294.5+17.9K and r, = 0.3310.07—m_rl )
[

The physical meaning of the correlation coefficients are as follows:

The C, XT (two independent random variables) should not be correlated. The correlation
coefficient should be zero. I1tis-0.46. Thisnon-zero vaueisaresult of only having 20 data
points. More data points would eventually average out to a correlation coefficient of zero.

The C, %, correlation coefficient should be positive because as the concentration
increases, the reaction rate increases. Itispositive. The C, %, correlation coefficient is small
because the rlationship is alinear (weak) relationship.

The T %, correlation coefficient should be positive because as the temperature increases,
the reaction rate increases. Itispositive. The T X correlation coefficient is large because the
relationship is an exponentia (strong) relationship.

Continuous Example:

A construction company has designed a distribution function which describes the area of their
construction sites. The sites are all rectangular with dimensionsaand b. The Joint PDF of the
dimensonsaand b are:

17



ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 6/04/98 (updated 09/99, 01/01)

‘14

f(a,b) = | 2120 forilfa<2and3£b£4
0 otherwise

The company is interested in determining pre-construction site costs including fencing and
clearing land. The amount of fencing givesrise to a perimeter cost. The Perimeter Costs, PC,
are $10 per meter of fencing required:

PC(a,b) =10(2a + 2b)
The amount of land cleared is proportional to the area of the site and gives rise to an area cost.
The Area Costs, AC, are $20 per square meter of the lot:

AC(a,b) = 20ab

(@ Are a and b independent?

(b) Findthemeanof a, b, PC,and AC.

(¢) Findthevarianceof a, b, PC,and AC.

(d) Find the covarianceof a>, aXPC, axAC,bX¥PC, b xAC, and PC xXAC.

(e) Find the correlation coefficient of a0, aX¥PC, axAC,bX¥PC, b xAC, and PC xXAC.

(@ a and b areindependent if f(X,y) = g(x)h(y) where

¥ ¥
g(x)= g(x,y)dy and h(y) = F(x y)dx

-¥ -¥

4 ‘4 4 b2 2
a)=y(a,b)Jdb=R—abdb=—a— =—a
0(a) = (@b)b =0, 77|, =3

2 2 4 4 a2" 2
h(b) = (f(a,b)da= —abda=—b— ==b
(b)=glabda= g, 21 2| 7

4 &2 _e2 0_4
f =—ab= h(y) =c-a<t=bt=—
(x,y) =—7ab = g(x)h(y) g3a£7bﬂ 7P

Therefore, a and b are independent.

(b) Findthemeanof a, b, PC,and AC.

The general formulafor the mean is:
¥ ¥

My = E(CXY)) = 9 (% y)E(x, y)dxdy

-¥-¥
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24 " 2 3 .2
m = E@) = o5 ab%ibda = & 28 AT 08
s e2l g Sg 1 24 g213 24 63
24 . 2 3 2 .2
m, =E(b) = (‘x‘pgeiab(—?dbda = \aeiab__ da =222 3710 _ 74 5550
13 €21 g f% 3 g212 3g 21
24 % b2 b3 ('j4
m. =E(PC) = @O(a+b)g— ab—dbda = —(gaz —+a—xzda=
&2 3 &

_som’7 a’37¢ - 8029 | 1119_6400 _ ) ) 5

21%32 2 3q 21¢6 6 g 63
OR remember that the mean isa linear operator, E(ax +by) = aE(x) + bE(y)

my. = E(PC) = E(20a) + E(20b) = 20E(a) + 20E(b) = 20(1.56) + 20(3.52) = $101.6

m,. =E(AC) = @O(ab)g—ab_dbda _80 5@, b0 _80a370 _ 20720
2% 35 28

=$109.63
21§3 35 189

OR remember E(xy) = E(X)E(Y)
myc = E(AC) = E(20ab) * 20E(a)E(b) = 20(1.56)(3.52) = $109.63
because aand b areindependent.

(¢) Findthevarianceof a, b, PC,and AC.

The working equation to calculate the variance of afunctioniis:

For these variables, we have calculated the mean (necessary to evauate the function in the second
term on the right hand side). We must next cal culate the mean of the square (the first term on the
right hand side) before we can calculate the variance.

Sqixy) = E[g (xy) 2]' Elg(x,y)}

24 . 2 2 4 2
m. =E(@*) = c‘x‘;alzf;eiab(—?dbdaz(‘gaei Sb—— da Eeia—zg =@—2.50
s2 =E[a?]- E[a] = 2,50 - 155567 = 0.0802
2004 b0 o4 2?1750 _ 525
= E(b? 2 ab—dbda —a—— da=(— - —"% ===~ =12.50
i ()w)g o1 4 ;@ 8012 4 5 a2

s2 = Efp?]- E[b] =12.50- 3.52382 = 0.0828

To calculate the variance of PC(a,b) = 10(2a + 2b) remember
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2 — 12g2 2a2
Saxswy = &Sy +0b7sy +2abs,,

Then we only need to calculate the covariance of aand b. The working formulafor the
covariance is:

S =Elxy]- E[XE[Y]

S0 we need the expectation value of E(ab)

24 4 °ee, bt
, = E(ab) = ab —ab—dbda a’
(ab) = cﬁ )9 21%
Then
S =5.48- 1.56(3.52) =0.00

The covariance of aand b is zero. We should have known that because we showed in part (a)
that aand b were statistically independent.
and

S20 = S20)-20%(s7 + 52) +2(20)(20)s , = 65.2.
Lastly,

24
1600 > s b? O
m,.. =E(AC?) = ¢ Oz(ab)2 ab%dbda = a’—zda=
ne 13 g 7] 21 Sg 4 5

_1600a&* 1756 _ 4200000

21 §4 4 5 336
s2. = E[aC?]- E[AC] =12500.0- 109.63? = 481.

=12500.0

(d) Find the covarianceof a >, aXPC, axAC,b x¥PC, b xAC, and PC xAC.

In part (c) we found the covariance of a X to be 0.0 because they were statistically independent.
For the rest of these quantities, we use the rule:

w =Elxy]- E[X[E]Y]

where we already have the expectation values of the two factors in the second term on ther.h.s.
We only need to find the first term on the r.h.s. to find the covariance.

24 2 3.4
3b 2 0

mec =E(aPC) = @O(a +ab)g— ab—dbda = cga

13

da=

O
_B0gm'7 a'370 8005, 2505_241360 ;g
21842 3 35 2168 9 g 1512
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s.c =E[aPC]|- E[aJE[PC] =159.63- (1.556)(101.59) = 1.56

24 b3 b4
=E(bPC) = ¢x)0(ab + bz)g— ab—dbda = (gaz —+ a—— da =

13

80%. 37+a 1750 _80a259 5250 543760

: =8 =359.63
"21§33 2 45 2169 8 g 1512

Syec = E[oPC]- E[b]E[PC] = 359.63 - (3.5238)(101.59) =1.65

24 2 3 8
A 80 &;b°0
= E(aAC) CI?O(azb)(;— ab—dbda = z cgas ?éda =
1

_80am” 37 5 _ 44400

2184 3 5 252

=176.19

s..c =E[aAC]- E[aJE[AC] =176.19 - (1.556)(109.63) = 5.65

24 4
&,b" 0

.« =E(bAC) = wO(abz)g—ab—dbda— cga 4
Qa

80 a&® 1750 _ 98000

“21§3 4 5 252

=388.89

s..c =E[bAC]- E[b]E[AC] = 388.89 - (3.52)(109.63) = 3.00

2 1600 b* o
Mere = E(ACPC) = (R0 (@b + abz)g— ab—dbda == a2 2 da =
13 % 3 4 %

_1600ga' 37 a’1750 _ 1600 g555 1225 _ 2848000 _ =11301.63

20843 '3 445 21 &12 12 g 252

s .rc = E[ACPC]- E[AC[E[PC] =11301.63 - (109.63)(101.59) = 164.3

(e) Find the correlation coefficient of a0, aX¥PC, axAC,b X¥PC, b xAC, and PC xXAC.
The general formulafor the correlation coefficient is:

— SXY

roo =
XY S8,
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[ = Sa _ 0.0 _
® 5.5, +/1.564/3.52
_ S.c _ 1.56

r 0.15
FC s.Spe 1/1.564/65.2

_ Sac _ 5.65 _
S,Sxc +1.56+/481.

I’.’:IAC

164.3

— Secac -

frene = S, N65.2V48L 0-93

o= Spec _ 1.65 _
SpSpc 1/3.524/65.2

(= Swe - 300
SpSac \/3.524/481

These correlations (with the exception of aand b) are al positive. They should be because as you
increase one side of the lot (either a or b), you should increase both the perimeter and the area.
Also, as you increase the perimeter, on average, you increase the area, given our distribution

function.
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