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Lectures 7 -  Mathematical Expectation

Text:  WMM, Chapter 4.  Sections 4.1-4.3

Mean
The “mean” is another name for the “average”.  A third synonym for mean is the

“expected value”.    (Definition 4.1, p. 85)   Let x be a random variable with probability
distribution f(x).  The mean of x is

∑==µ
x

x )x(xf)x(E (7.1a)

if x is discrete, and
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if x is continuous.

Example 7.1:  You all may be pretty upset that I suggest that the complicated formulae
above give the average when you have been taught since elementary school that the average is
given by:
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where you just sum up all the elements in the set and divide by the number of elements.  Well, let
me reassure you that what you learned in elementary school is not wrong.  This formula above is
one case of equation (7.1) where the probability distribution, f(x) = 1/n.   (This is called a uniform
probability distribution.)  Since f(x) is not a function of x, it can be pulled out of the summation,
giving the familiar result for the mean.  However, the uniform distribution is just one of an infinite
number of probability distributions.  The general formula will apply for any probability
distribution.

Mean of a function of x
Equation 7.1 gives the expected value of the random variable.  In general, however, we

need the expected value of a function of that random variable.  In the general case, our equations
which define the mean become:
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if x is discrete, and
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if x is continuous, where h is some function of x.  You should see that equation (7.1) is the case of
equation (7.2) where h(x)=x.  This is one kind of function.  However, there is no point in learning
a formula for one function, when the formula for all functions is at hand.  So, equation (7.2) is the
equation to remember.

Example 7.2 (4.2 from WMM, p. 86):  In a gambling game, three coins are tossed.  A man
is paid $5 when all three coins turn up the same, and he will lose $3 otherwise.  What is the
expected gain?

In this problem, the random variable, x, is the number of heads.  The distribution function,
f(x) is a uniform distribution for the 8 possible outcomes of the gambling game.  The function h(x)
is the payout or forfeit for outcome x.

outcome x h(x) f(x)
HHH 3 +$5 1/8
HHT 2 -$3 1/8
HTH 2 -$3 1/8
HTT 1 -$3 1/8
THH 2 -$3 1/8
THT 1 -$3 1/8
TTH 1 -$3 1/8
TTT 0 +$5 1/8

We know that the probability distribution f(x) = 1/8, since there are 8 random, equally probable
outcomes.  Using equation (7.2), we find:
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The average outcome is that the gambler loses a dollar.

Now you can do this same problem another way and make the distribution over the number of
heads rather than all possible outcomes.  In this case, the table looks like:

outcome x h(x) f(x)
HHH 3 +$5 1/8
HHT,HTH,THH 2 -$3 3/8
TTH, THT, TTH 1 -$3 3/8
TTT 0 +$5 1/8

Then using equation (7.2) again, we find:
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In fact there are other ways to define the problem.  Choose a distribution that makes sense to you.
They will all give the same answer so long as your distribution agrees with the physical reality of
the problem.

Mean of a function of x and y  (Definition 4.2, p. 89)
Equation 7.2 gives the expected value of a function of one random variable.  This equation

can be simply extended to a function of two random variables.
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if x and y are discrete, and
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if x and y are continuous.  You should see that equation (7.3) is entirely analogous to equation
(7.2).

Example 7.3:  Given the joint probability density function
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find the mean of h(x,y) = y.
Using equation (7.3b) we have
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What this says is that the average value of y for this joint probability distribution function is 0.6.
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Variance
The mean is one parameter of a distribution of data.  It gives us some indication of the

location of the random variable.  It does not however give us any information about the
distribution of the random variable.  For example, the mean of h(x)=x tells us:
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where a distribution like this is centered but it does not tell us the shape of the distribution:
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These three probability density functions (PDFs) have the same mean but have different shapes.
In one of these, the distribution is much more closely gathered around the mean.  In the other
two, the “spread” is greater.  The variance is a statistical measure of this spread.
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(Definition 4.3, p. 93)  Let x be a random variable with PDF f(x) and mean µx.  The
variance of x, σ2

x, is
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if x is discrete, and
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if x is continuous.  You should see that equation (7.4) is just another case of equation (7.2) where
h(x) = (x- µx)

 2.  What the variance gives is “the average of the square of the deviation from the
mean”.  The square is in there so that all the deviations are positive and the variance is a positive
number.

Some tricks with the variance:
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People frequently express the variance as “the difference between the mean of the squares and the

square of the mean” of the random variable x.  They do this because sometimes, you have [ ]2xE

and [ ]xE  so the variance is much easier to calculate from equation (7.5) than it is from equation

(7.4).

Example 7.4:  Calculate the mean and variance of the discrete data set of 10 numbers
containing {1,2,3,4,5,6,7,8,9,10}.
The mean is calculated from equation (7.3a), where the probability distribution is uniform, i.e.,
f(x) = 1/n.  So µ = 5.5.
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The variance is calculated by squaring each number in the set so that you have a new set of X2

containing {1,4,9,16,25,36,49,64,81,100}.  Then the mean of this set of numbers (using equation
(7.3a)) is 38.5.  Now using equation (7.5), we have:

[ ] [ ] 25.8)5.5(5.38xExE 2222 =−=−=σ

The variance is always positive.  If you don’t get a positive answer using this formula then you
have most certainly done something wrong.

Warning on using equation (7.5), the shortcut for the variance

The equation 7.5 may look very friendly but it comes with dangers.  You often use this
equation to obtain a small variance from the difference of two large numbers.  Therefore, the
answer you obtain may contain round-off errors.  You need to keep all your insignificant figures
in the averages in order to obtain the variance to the same number of significant figures.

Example:

Use [ ] [ ]222 xExE −=σ  to obtain the variance of the following 10 numbers, using f(x) =

1/10.

s = [9.92740197834152
  10.06375116530286
   9.98603320980938
  10.07806434475388
  10.04698164235319
  10.03746471832082
   9.96922239354823
   9.93320694775544
   9.93112251526341
   9.93822326228399]

Below we give a table that reports the means and variance for keeping different number of
significant figures:

4 sig figs:  mu_s = 9.990000000e+000 mu_s2 = 9.983000000e+001 var_s = 2.990000000e-002
5 sig figs:  mu_s = 9.991000000e+000 mu_s2 = 9.982600000e+001 var_s = 5.919000000e-003
6 sig figs:  mu_s = 9.991100000e+000 mu_s2 = 9.982630000e+001 var_s = 4.220790000e-003
7 sig figs:  mu_s = 9.991150000e+000 mu_s2 = 9.982626000e+001 var_s = 3.181677500e-003
8 sig figs:  mu_s = 9.991147000e+000 mu_s2 = 9.982626500e+001 var_s = 3.246624391e-003
9 sig figs:  mu_s = 9.991147200e+000 mu_s2 = 9.982626470e+001 var_s = 3.242327932e-003
10 sig figs:  mu_s = 9.991147220e+000 mu_s2 = 9.982626473e+001 var_s = 3.241958286e-003
all sig figs: mu_s = 9.991147218e+000 mu_s2 = 9.982626473e+001 var_s = 3.242000540e-003
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You can see that when we only keep 4 significant figures, our calculated variance is off by 822%!
You need to keep additional significant figures in the mean and the mean of the squares in order
to get the variance with any accuracy.

For your information, here is the entire Matlab code that I used to generate the data in this
example:

n=10;
r = rand(n,1);
s = 10 + 0.1*(2*r - 1)
s2 = s.^2;
f = 1/n;
format long
mu_s = sum(f*s);
mu_s2 = sum(f*s2);
var_s = mu_s2 - mu_s^2;
for i = 2:1:8
   mu_s_cut(i) = round(mu_s*(10^i))/(10^i);
   mu_s2_cut(i) = round(mu_s2*(10^i))/(10^i);
   var_s_cut(i) = mu_s2_cut(i) - mu_s_cut(i)^2;

fprintf(1,'%i sig figs:  mu_s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n',
i+2, mu_s_cut(i),mu_s2_cut(i),var_s_cut(i));
end
fprintf(1,'all sig figs: mu_s = %16.9e mu_s2 = %16.9e var_s = %16.9e\n',
mu_s,mu_s2,var_s);

Standard deviation
The standard deviation, σ, is the positive square root of the variance, σ2.
Example 7.5:  Calculate the standard deviation of the discrete data set of 10 numbers

containing {1,2,3,4,5,6,7,8,9,10}.  We calculated the variance in the example 7.4 above.  The
standard deviation is the square root of the variance

872281323.225.82 ==σ=σ

The standard deviation gives us a number in the same units as the random variable X, which
describes the spread of the data.

Variance of a function of x
(Theorem 4.3, p. 96)  Let x be a random variable with PDF f(x).  Let g(x) be a function of

x.  We know that the mean of g(x) is, and mean µg(x) from equation (7.2). The variance of a
function g(x), is

( )[ ] ( )∑ µ−=µ−=σ
x

2
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2
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2
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if x is discrete and
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if x is continuous.  You should see that equation (7.6) is just another case of equation (7.2) where
the function of the random variable is h(x)=(g(x)- µg(x))

 2.  As in the case where the function was
h(x)=(x-µ)2, (in equation (7.4)), equation (7.6) can also be reduced to a second form:

( )[ ] ( )[ ]222
)x(g xgExgE −=σ (7.7)

Beware:  we have defined 3 functions, f(x), g(x), and h(x).  f(x) is the probability distribution.
g(x) is the function of the random variable that we would like to know about.  h(x) is the function
that we feed into equation (7.2) so that we can get the variance.

In other words, if ( )2
)x(g)x(g)x(h µ−=  then )x(h

2
)x(g µ=σ .

Example 7.6: Given the joint probability density function
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find the variance of g(x,y) = x-1.

We will use equation (7.7).  To do so we must find ( )[ ]2xgE  and ( )[ ]xgE .  ( )[ ]xgE  is

the mean of g(x) and can be calculated from the formula for the mean, equation (7.2).
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Now we repeat the calculation for the square of g(x)
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Then we substitute into equation (7.7)
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Variance and Covariance of a function of x and y
By analogous methods, we can extend the variance definition to a function of two

variables.

( )[ ] ( )∑∑ µ−=µ−=σ
x y

2
)y,x(g

2
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2
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if x and y are discrete and
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if x and y are continuous.  You should see that equation (7.8) is just another case of
equation (7.3) where the function of the random variable, let’s call it h(x,y)=(g(x,y)- µg(x,y))

 2.
Again, equation (7.8) can be rewritten

( )[ ] ( )[ ] )y,x(h
222

)y,x(g y,xgEy,xgE µ=−=σ (7.9)

Now, let’s think about equation 7.8.  If g(x,y)=x, then h(x,y)= (x- µx)
 2 and we calculate the

variance of x from equation (7.8). If g(x,y)=y, then h(x,y)= (y- µy)
 2 and we have the variance of y

from equation (7.8).
Now, if h(x,y)= (x-µx)(y- µy), then we can use equation (7.8) to calculate the

COVARIANCE, σXY.  Beware, the covariance has the units of variance even though it does not
have the squared sign after it.  Also beware there is no function g(x) defined for the covariance, so
equation (7.9) does not apply.  But if you substitute h(x,y)= (x-µx)(y- µy) into equation (7.2) and
solve as we did to arrive with equation (7.5) you find:

[ ] [ ] [ ] YXXYXY yExExyE µµ−µ=−=σ (7.10)

The qualitative significance of the covariance is the dependency between variables x and y.

XYσ qualitative significance

0XY >σ as x increases, y increases

0XY =σ x and y are independent

0XY <σ as x increases, y decreases

Example 7.7: Given the joint probability density function
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find the covariance of x and y.
To find the covariance, we need: [ ] [ ] [ ]yE and ,xE,xyE .  We already calculated [ ]yE  in

example  From example 7.3 and we found [ ]yE =0.6.  Using a similar procedure, we calculate, the

expected value of X, [ ]xE
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In an analogous fashion,

[ ] ( )
∫ ∫∫ ∫ 






 +

==
∞

∞−

∞

∞−

1

0

1

0

dydx
5

y3x22
xydydx)y,x(xyfxyE

[ ] dy
2
y3

3
2

5
y2

dy
2
x

y3
3
x2

5
y2

xyE
1

0

1

0

1x

0x

23

∫∫ 





 +=








+=

=

=

[ ]
6
1

6
3

6
2

5
1

6
y3

6
y2

5
2

xyE

1y

0y

32

=





 +=








+=

=

=

so using equation (7.10), we find:

[ ] [ ] [ ] 00667.0
150

1
300

102100
10
6

30
17

3
1

yExExyEXY −=−=
−

=−=−=σ

Correlation Coefficient
The magnitude of σXY does not say anything regarding the strength of the relationship

between x and y because σXY. depends on the values taken by x and y.  A scaled version of the
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covariance, called the correlation coefficient is much more useful.  The correlation coefficient is
defined as

YX

XY
XY σσ

σ
=ρ (7.11)

This variable ranges from -1 to 1 and is 0 when σXY is zero.  A negative correlation coefficient
means that when y increases, x decreases and vice versa.  A positive correlation coefficient
means that when x increases, y also increases, and vice versa for decreasing.

XYρ qualitative significance

1XY =ρ x = y

0XY >σ as x increases, y increases

0XY =σ x and y are independent

0XY <σ as x increases, y decreases

1XY −=ρ x = -y

Example 7.8:  Given the joint PDF in example 7.7, find the correlation coefficient and
make a statement about whether x is strongly or weakly correlated to y, relative to the variance of

x and y.  To do this, we need the variance of x and y, which means we need [ ]2xE  and [ ]2yE

[ ] ( )
∫ ∫∫ ∫ 






 +

==
∞

∞−

∞

∞−

1

0

1

0

222 dydx
5

y3x22
xdydx)y,x(fxxE

[ ] dyy
2
1

5
2

dyyx
2
x

5
2

xE
1

0

1

0

1x

0x

3
4

2 ∫∫ 





 +=








+=

=

=

[ ]
5
2

2
1

2
1

5
2

2
y

2
y

5
2

xE

1y

0y

2
2 =






 +=








+=

=

=

so

[ ] [ ] 0789.0
30
17

5
2

xExE
2

222
X =






−=−=σ

Now for y:
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so the correlation coefficient is

0877.0
0733.00789.0

00667.0
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The small value of the correlation coefficient indicates that the random variables x and y are not
strongly correlated.

Means and Variances of linear combinations of Random Variables

These are several rules for means and variances.  These rules have their basis in the theory
of linear operators.  A linear operator L[x] performs some operation on x, such that:

]y[bL]x[aL]byax[L +=+ (7.12)

where x and y are variables and a and b are constants.  This is the fundamental rule which all
linear operators must follow.

Consider the differential operator:  ]x[
dt
d

]x[L = .  Is it a linear operator?  To prove or

disprove the linearity of the differential operator, you must substitute it into equation (7.12) to
verify it.

]y[
dt
d

b]x[
dt
d

a]byax[
dt
d ?

+=+

]y[
dt
d

b]x[
dt
d

a]by[
dt
d

]ax[
dt
d ?

+=+

]y[
dt
d

b]x[
dt
d

a]y[
dt
d

b]x[
dt
d

a +=+   This is an identity.

So, we have shown that the differential operator is a linear operator.  What about the integral

operator, ∫= xdt]x[L ?
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∫∫∫ +=+ ydtbxdtadt]byax[
?

∫∫∫∫ +=+ ydtbxdtabydtaxdt
?

∫∫∫∫ +=+ ydtbxdtaydtbxdta
?

This is an identity.

So, we have shown that the differential operator is a linear operator.  What about the square
operator, 2x]x[L = ?

22
?

2 byax]byax[ +=+

22
?

222 byaxbyabxy2xa +=++

0y)b1(babxy2x)a1(a
?

22 =−++−

we can use the quadratic equation to solve for x:

)a1(a

y)b1(b)a1(abaab
x

222

−
−−−±−

=

For any given value of y, the solution to this quadratic formula are the only solutions which satisfy
equation (7.12).  In order for the operator to be linear,  equation (7.12)  must be satisfied for all x.
Therefore, the square operator is not a linear operator.

Now, let’s see if the mean is a linear operator (we will do this just for the continuous case, but the
result could also be shown for the discrete case):

]y[bE]x[aE]byax[E
?

+=+

Substitute in the definition of the mean from equation (7.1)

∫∫∫
∞

∞−

∞

∞−

∞

∞−

+=+ dx)x(yfbdx)x(xfadx)x(f]byax[
?

The integral of a sum is the sum of the integrals.  Constants can be pulled outside the integral, so

∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

+=+ dx)x(yfbdx)x(xfadx)x(yfbdx)x(xfa

This is an identity.  The mean is a linear operator.  As a result, we have a few simplifications for
the mean.  In the equations below, we assume that  a and b are constants.
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a)a(E =

b)x(aE)bax(E +=+ (Theorem 4.5, p. 101)

))x(h(E))x(g(E))x(h)x(g(E +=± (Theorem 4.6, p. 102)

))y,x(h(E))y,x(g(E))y,x(h)y,x(g(E +=± (Theorem 4.7, p. 104)

If and only if x and y are independent random variables, then

)y(E)x(E)xy(E = (Theorem 4.8, p. 104)

We can show that the variance is not a linear operator.  However, by substituting in for the
definition of the variance, equation (7.4), we can come up with several short-cuts for computing
some variances of functions.  Again, we assume that a and b are constants.

02
b =σ

2
x

22
bax a σ=σ + (Theorem 4.9, p. 106)

xy
2
y

22
x

22
byax ab2ba σ+σ+σ=σ + (Theorem 4.10, p. 106)

If and only if x and y are independent, then

2
y

22
x

22
byax ba σ+σ=σ +

Proof of theorem 4.10.

We did not just make any of these theorems up.  They can all be derived.  In order to derive
theorem 4.10, we begin by direct substitution of (ax+by) into the definition of the variance:

( )[ ] ∫ ∫
∞

∞−

∞

∞−

µ−=µ−≡σ dxdy)y,x(f))y,x(g()y,x(gE 2
)y,x(g

2
)y,x(g

2
)y,x(g

∫ ∫
∞

∞−

∞

∞−
+µ−+=σ dxdy)y,x(f)byax( 2

byax
2

)y,x(g

∫ ∫
∞

∞−

∞

∞−
+++ µ+µ−µ−++=σ dxdy)y,x(f)by2ax2abxy2ybxa( 2

byaxbyaxbyax
22222

)y,x(g
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∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫
∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

µ+µ−µ−

++=σ

dxdy)y,x(fdxdy)y,x(fby2dxdy)y,x(fax2

dxdy)y,x(abxyf2dxdy)y,x(fybdxdy)y,x(fxa

2
byaxbyaxbyax

22222
)y,x(g

∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫
∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−
+

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

µ+µ−µ−

++=σ

dxdy)y,x(fdxdy)y,x(yfb2dxdy)y,x(xfa2

dxdy)y,x(xyfab2dxdy)y,x(fybdxdy)y,x(fxa

2
byaxbyaxbyax

22222
)y,x(g

2
byaxybyaxxbyaxxyy

2
x

22
)y,x(g b2a2ab2ba 22 +++ µ+µµ−µµ−µ+µ+µ=σ

yxbyax ba µ+µ=µ +

yx
2

y
22

x
2

xy
2

y
2

xy
2

x
2

xyy
2

x
22

)y,x(g

ab2ba

ab2b2ab2a2ab2ba 22

µµ+µ+µ+

µµ−µ−µµ−µ−µ+µ+µ=σ

( ) ( ) ( )xyxy
2

yy
22

xx
22

)y,x(g ab2ba 22 µµ−µ+µ−µ+µ−µ=σ

xy
2
y

22
x

22
)y,x(g ab2ba σ+σ+σ=σ

Q.E.D.

Two detailed examples complete this section of the course.  The first example is for discrete
variables and the second example is for continuous variables.

Discrete Example:
Consider the isomerization reaction:

BA →

This reaction takes place in a plant which relies on raw material solution, which unfortunately, is
supposed to have a concentration of reactant of 1.0 mol/liter but in reality varies +/- 20%.
The reactor is jacketed and is supposed to be isothermal.  Day to day observation of the
thermocouples in the reactor indicates that temperature swings about 10% around its set point of
300 K.

The reaction rate is given as

A
RT

H

oAb CekkCr
∆

−
==

where k  is the rate constant, ok  is the pre-exponential factor of the rate constant, H∆  is

the heat of reaction, R  is the gas constant, T  is the temperature,  and AC is the concentration of



ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer,  6/04/98 (updated 09/99, 01/01)

16

the reactant.  In one such reaction, 
min
liters

20ko = , 
mol
kJ

10H =∆ , and

Kmol
J

314.8R
⋅

= .  Over a month, 20 spot measurements are made of the reactor, measuring

the concentration of the reactant and the temperature.

Consider that the probability of obtaining any of the data points was uniform.  Therefore,

n
1

)x(f =  where n is the number of measurements taken.

The tabulated data and the functions of that data are shown below:

runs
AC T Br 2

AC 2T 2
Br TCA ⋅ BA rC ⋅ BrT ⋅

mol
liter

K mol
min

1 1.11 296.49 0.38 1.22 87904.81 0.15 327.92 0.42 113.49
2 1.01 272.80 0.25 1.02 74419.84 0.06 275.60 0.25 67.06
3 1.03 270.22 0.24 1.06 73020.02 0.06 278.42 0.25 64.96
4 0.82 324.55 0.40 0.67 105332.35 0.16 265.94 0.33 130.71
5 0.83 273.87 0.21 0.70 75006.19 0.04 228.67 0.17 56.61
6 1.11 274.20 0.28 1.23 75185.95 0.08 304.31 0.31 75.73
7 0.80 299.56 0.29 0.64 89733.67 0.08 239.93 0.23 86.56
8 0.84 325.13 0.42 0.71 105709.64 0.17 273.64 0.35 135.39
9 0.89 310.19 0.37 0.78 96220.00 0.13 274.75 0.32 113.75

10 1.16 271.78 0.28 1.35 73862.15 0.08 315.23 0.32 75.44
11 1.13 298.13 0.40 1.27 88878.56 0.16 336.10 0.45 118.94
12 1.14 304.56 0.44 1.30 92759.55 0.19 347.10 0.50 133.77
13 1.13 270.54 0.26 1.27 73189.31 0.07 305.20 0.30 71.58
14 1.04 280.21 0.29 1.09 78514.87 0.08 292.34 0.30 79.93
15 1.15 306.72 0.46 1.32 94077.94 0.21 352.47 0.52 139.67
16 0.87 319.16 0.40 0.76 101864.25 0.16 277.89 0.35 128.30
17 0.83 304.60 0.32 0.68 92778.97 0.10 251.76 0.26 97.07
18 1.06 303.42 0.40 1.11 92064.18 0.16 320.26 0.42 121.60
19 0.83 289.58 0.26 0.69 83856.40 0.07 241.11 0.22 75.75
20 0.89 301.14 0.33 0.79 90684.97 0.11 267.54 0.29 98.58

sum 19.66 5896.84 6.66 19.68 1745063.64 2.32 5776.21 6.57 1984.89
mean 0.98 294.84 0.33 0.98 87253.18 0.12 288.81 0.33 99.24
variance 0.02 321.47 0.01 covariance -1.03 0.00 1.09
standard
deviation

0.13 17.93 0.07 correlation -0.43 0.14 0.83

We use the definition of the mean, ∑==µ
x

)x(xf)x(E ,  to obtain expectation values for the

following functions:

AC T Br 2
AC 2T 2

Br TCA ⋅ BA rC ⋅ BrT ⋅
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The expectations are shown in the table above in the row marked mean.  The variances of AC ,

T , and Br are calculated using the “difference between the mean of the square and the square of

the mean” rule.

( )[ ] ( )[ ]222
)x(g xgExgE −=σ

Those variances are shown in the first three columns in the row marked variance.  The
covariances are obtained using the formula:

[ ] [ ] [ ]yExExyExy −=σ

and are shown in the last three columns.  The standard deviations and correlation coefficients are
given in the bottom row, obtained from:

2
)x(g )x(gσ=σ  and 

yx

xy
xy σσ

σ
=ρ .

Physical explanation of statistical results:
The mean and the standard deviation of the concentration show that statistically speaking:

liter
mol

13.098.0CA ±=

Similarly, K9.175.294T ±=  and 
min
mol

07.033.0rB ±= .

The physical meaning of the correlation coefficients are as follows:
The TCA ⋅ (two independent random variables) should not be correlated.  The correlation

coefficient should be zero.  It is -0.46.  This non-zero value is a result of only having 20 data
points.  More data points would eventually average out to a correlation coefficient of zero.

The BA rC ⋅  correlation coefficient should be positive because as the concentration

increases, the reaction rate increases.  It is positive.  The BA rC ⋅  correlation coefficient is small
because the relationship is a linear (weak) relationship.

The BrT ⋅  correlation coefficient should be positive because as the temperature increases,

the reaction rate increases.  It is positive.  The BrT ⋅  correlation coefficient is large because the
relationship is an exponential (strong) relationship.

Continuous Example:
A construction company has designed a distribution function which describes the area of their
construction sites.  The sites are all rectangular with dimensions a and b.  The Joint PDF of the
dimensions a and b are:
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 ≤≤<≤=  

                       otherwise               0

4b3 and 2a1 for          ab
21
4

)b,a(f

The company is interested in determining pre-construction site costs including fencing and
clearing land.  The amount of fencing gives rise to a perimeter cost.  The Perimeter Costs, PC ,
are $10 per meter of fencing required:

( )b2a210)b,a(PC +=
The amount of land cleared is proportional to the area of the site and gives rise to an area cost.
The Area Costs, AC , are $20 per square meter of the lot:

ab20)b,a(AC =

(a)  Are a  and b independent?
(b)  Find the mean of a , b , PC , and AC .
(c)  Find the variance of a , b , PC , and AC .
(d)  Find the covariance of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ .
(e)  Find the correlation coefficient of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ .

(a) a  and b are independent if   )y(h)x(g)y,x(f = where

   dx)y,x(f)y(h    and   dy)y,x(f)x(g ∫∫
∞

∞−

∞

∞−

==

a
3
2

2
b

a
21
4

abdb
21
4

 db)b,a(f)a(g
4

3

24

3

4

3

==== ∫∫

b
7
2

2
a

b
21
4

abda
21
4

 da)b,a(f)b(h
2

1

22

1

2

1

==== ∫∫

ab
21
4

  b
7
2

a
3
2

)y(h)x(gab
21
4

)y,x(f =













===

Therefore, a  and b are independent.

(b)  Find the mean of a , b , PC , and AC .

The general formula for the mean is:

∫ ∫
∞

∞−

∞

∞−

==µ dydx)y,x(f)y,x(h))Y,X(h(E)y,x(h
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56.1
63
98

2
7

3
a

21
4

da
2
b

a
21
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dadbab
21
4

a)a(E
2

1

32

1
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2

2
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4

3
a ==








=
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==µ ∫∫ ∫ m

52.3
21
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3
37

2
a

21
4

da
3
b

a
21
4

dadbab
21
4

b)b(E
2

1

22

1

4

3

32

1

4

3
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=
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==µ ∫∫ ∫ m

59.101$
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6400
6

111
6

49
21
80

3
37

2
a

2
7

3
a

21
80

da
3
b

a
2
b

a
21
80

dadbab
21
4

)ba(20)PC(E

2

1

23

2

1

4

3

32
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2
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3
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==





 +=








+=

=







+=






+==µ ∫∫ ∫

OR remember that the mean is a linear operator, )y(bE)x(aE)byax(E +=+

6.101$)52.3(20)56.1(20)b(E20)a(E20)b20(E)a20(E)PC(EPC =+=+=+==µ

63.109$
189

20720
3

37
3
a

21
80

da
3
b

a
21
80

dadbab
21
4

)ab(20)AC(E
2

1

32

1

4

3

3
2

2

1

4

3
AC ==








=








=






==µ ∫∫ ∫

OR remember )y(E)x(E)xy(E =

63.109$)52.3)(56.1(20)b(E)a(E20)ab20(E)AC(EAC ==≠==µ

because  a and b  are independent.

(c)  Find the variance of a , b , PC , and AC .

The working equation to calculate the variance of a function is:
For these variables, we have calculated the mean (necessary to evaluate the function in the second
term on the right hand side).  We must next calculate the mean of the square (the first term on the
right hand side) before we can calculate the variance.

( )[ ] ( )[ ]222
)y,x(g y,xgEy,xgE −=σ

50.2
168
420

2
7

4
a

21
4

da
2
b

a
21
4

dadbab
21
4

a)a(E
2

1

42
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4

3

2
3
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1

4

3

22
a2 ==








=
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==µ ∫∫ ∫

[ ] [ ] 0802.05556.150.2aEaE 2222
a =−=−=σ

50.12
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4

175
2
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da
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b
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22
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=
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==µ ∫∫ ∫

[ ] [ ] 0828.05238.350.12bEbE 2222
b =−=−=σ

To calculate the variance of ( )b2a210)b,a(PC +=  remember
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XY
2
Y

22
X

22
bYaX ab2ba σ+σ+σ=σ +

Then we only need to calculate the covariance of a and b.  The working formula for the
covariance is:

[ ] [ ] [ ]yExExyEXY −=σ

So we need the expectation value of E(ab)
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Then
00.0)52.3(56.148.5

ab
=−=σ

The covariance of a and b is zero.  We should have known that because we showed in part (a)
that a and b were statistically independent.
and

( ) .2.65)20)(20(220 ab
2
b

2
a

22
)ba(20

2
PC =σ+σ+σσ=σ =+

Lastly,
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[ ] [ ] .48163.1090.12500ACEACE 2222
AC =−=−=σ

(d)  Find the covariance of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ .
In part (c) we found the covariance of ba ⋅ to be 0.0 because they were statistically independent.
For the rest of these quantities, we use the rule:

[ ] [ ] [ ]yExExyEXY −=σ

where we already have the expectation values of the two factors in the second term on the r.h.s.
We only need to find the first term on the r.h.s. to find the covariance.
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(e)  Find the correlation coefficient of ba ⋅ , PCa ⋅ , ACa ⋅ , PCb ⋅ , ACb ⋅ , and ACPC ⋅ .
The general formula for the correlation coefficient is:

YX

XY
XY σσ

σ
=ρ
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0.0
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σσ
σ
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σσ
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These correlations (with the exception of a and b) are all positive.  They should be because as you
increase one side of the lot (either a or b), you should increase both the perimeter and the area.
Also, as you increase the perimeter, on average, you increase the area, given our distribution
function.


