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Lectures 1-3 -  Probability

Text:  WMM, Chapter 1 (All Sections)
Chapter 2, Sections 2.1-2.7.

Sample Space
The set of all possible outcomes of a statistical experiment is called the sample space, S.

(Definition 2.1, p. 11).  Example:  When you flip a coin once the sample space is heads or tails,
S={H,T}.  When you toss a die, the sample space is a number from 1 to 6, S={1,2,3,4,5,6}.
When you flip two coins, the sample space is S={HH,HT,TH,TT}.  Braces denote a set.  Each
entry in the set is called an element.

Instead of listing all of the elements of a big set, you can use a rule or statement.  An
example:  (The pipe is read as “such that”)

{ }4yx)y,x(S 22 ≤+=

Event
An event is a subset of a sample space.   (Definition 2.2, p. 14).  Example, if

S={HH,HT,TH,TT}, possible subsets include:  B={Ø}, B={HH}, B={HH,TT}, B=S.

Complement
The complement, A’, of an event A with respect to the sample space, S, is the subset of all

elements of S that are not in A.   (Definition 2.3, p. 14).  Example, if S={HH,HT,TH,TT},
possible subsets and complements include:  B={Ø} and  B’=S; B={HH,TT} and B’={HT,TH}.

Intersection
The intersection of two events A and B, denoted by the symbol, BA ∩ , is the event

containing all elements in both A and B. (Definition 2.5, p. 15).Example:
if B={HH,TT} and A={HH,HT,TH} then BA ∩ = {HH}
if B={HH,TT} and A={HT,TH} then BA ∩ = {Ø}

Mutually exclusive, or disjoint
Two events A and B are mutually exclusive if BA ∩ = {Ø}, that is, if A and B have no

common elements. (Definition 2.6, p. 15)  Example: BB ′∩ = {Ø}, that is, an event and its
complement are by definition mutually exclusive events.

Union
The union of two events A and B, denoted by the symbol, BA ∪ , is the event containing

all elements in either A or B. (Definition 2.6, p. 15).Example:
BB ′∪ = S, that is, the union of an event and its complement is the sample space

Venn Diagrams
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A graphical way to express sets and events.
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Counting Rules:

We need counting rules in probability because the probability of an event A is the ratio of
the number of elements in A over the number of elements in the sample space S.

S in elements of#
 Ain elements of#

)A(P =

Therefore, we need to know how to count the number of elements in A and S.  We will study
three counting rules:

• generalized multiplication rule
• permutations of distinct objects rule
• combinations of distinct objects rule

Generalized Multiplication rule
If an operation can be performed in 1n  ways, and if for each of these, a second operation

can be performed in 2n  ways, and for each of the first two, a third operation can be performed in

3n  ways, and so forth, the sequence of k operations can be performed in k321 n...nnn  ways.

(page 20)  Example:  If you consider the set of elements composed of one coin toss, followed by
one die roll, followed by drawing from a hat containing m names.  The number of elements in the
set is 2*6*m.

( ) TRC II           ( ) TRC UI ( )′TRU

( ) TRC IU ′
           ( )[ ]′TRC UU ( ) TRC UU
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Permutation
A permutation is an arrangement of all or part of a set of objects.  (Definition 2.7, page

22).  A permutation is a grouping of elements arranged in a particular way.  Example:  consider
flipping a coin three times.  The permutation {H,T,T} is different from the permutation {T,H,T}
or {T,T,H}.  All of these events are elements of the subset that contains the result one heads, and
two tails, but, when you are interested in the order, they become distinct, and we call them
permutations.  When are permutations important?  It depends on the individual situation.

The number of permutations of n distinct objects is n!  That is “n factorial”.

.1*2*3)...3n)(2n)(1n(n!n −−−= (1.1)

The number of permutations of n distinct objects taken r at a time, where r ≤  n, is

)!rn(
!n

Prn −
= (1.2)

When is the formula applicable?  This formula applies when the order of a result is
important.  For example:  How many ways can a group schedule 3 different meetings on any of
five possible dates?  The answer is 35P  = 60.  How did we know to use equation (1.2)?  The key

tip-off was the word “different”.  This means the meetings are distinguishable and order matters.

Quick Calculation of Permutations by hand

When n becomes large but r is small, it can be difficult to compute the permutation of  rnP .
Consider the case where n=200 and r=2.  Then

!198
!200

)!2200(
!200

Prn =
−

=

Our calculators cannot computer the factorial of 200 or 198.  The numbers are too large.
However, we can still obtain the number of permutations, if we consider that

!198*199*200!200 =

Then we have

39800199*200
!198

!198*199*200
)!2200(

!200
Prn ===

−
=

Implementation of Permutations in MATLAB

This simple code, perm.m, illustrates how one would numerically compute a permutation.  It
doesn’t use the cancellation trick shown above.  It computes the factorial of n, then computes the
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factorial of (n-x), then returns the quotient.  If you want to write a better permutation code, you
should include the cancellation trick.

%
%  FUNCTION perm(n,x)
%
%  This function computes the number of permutations
%  when choosing x distinct objects from n distinct objects
%
%  Author:  David Keffer, dkeffer@utk.edu
%  Department of Chemical Engineering, University of Tennessee, Knoxville
%  Last updated:  January 12, 2000
%
function f = perm(n,x)
fac1 = 1.0;
if (n > 1)

for i = n:-1:2
   fac1 = fac1*i;
   end
end
fac2 = 1.0;
if (n-x > 1)

for i = (n-x):-1:2
   fac2 = fac2*i;
   end
end
f = fac1/fac2;

Combination
A combination is a grouping of elements without regard to order.  (p. 25)  The number of

combinations of n distinct objects taken r at a time, where r ≤  n, is

)!rn(!r
!n

r

n

−
=








(1.3)

Quick Calculation of Combinations by hand

When n becomes large but r is small, it can be difficult to compute the combination, 
r

r

n








.

Consider the case where n=200 and r=2.  Then

!198!2
!200

)!2200(!2
!200

)!rn(!r
!n

r

n

⋅
=

−
=

−
=









Our calculators cannot computer the factorial of 200 or 198.  The numbers are too large.
However, we can still obtain the number of permutations, if we consider that

!198*199*200!200 =
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Then we have

19900
2

199*200
!198!2

!198*199*200
)!2200(!2

!200
r

n
==

⋅
=

−⋅
=









Implementation of Combinations in MATLAB

This simple code, comb.m, illustrates how one would numerically compute a combination.  It
computes the factorial of n, then computes the factorial of (n-x), then computes the factorial of x,
then returns the n!/((n-x)!*x!).   It doesn’t use the cancellation trick shown above.  If you want to
write a better combination code, you should include the cancellation trick.

%
%  FUNCTION comb(n,x)
%
%  This function computes the number of combinations
%  when choosing x indistinct objects from n indistinct objects
%
%  Author:  David Keffer, dkeffer@utk.edu
%  Department of Chemical Engineering, University of Tennessee, Knoxville
%  Last updated:  November 19, 1999
%
function f = comb(n,x)
fac1 = 1.0;
if (n > 1)

for i = n:-1:2
   fac1 = fac1*i;
   end
end
fac2 = 1.0;
if (n-x > 1)

for i = (n-x):-1:2
   fac2 = fac2*i;
   end
end
fac3 = 1.0;
if (x > 1)

for i = x:-1:2
   fac3 = fac3*i;

end
end
f = fac1/(fac2*fac3);

The difference between permutations and combinations

Example One.
What are the number of ways of arranging the letters A, B, C, when order matters?
  33P  =6.             They are {ABC, ACB, BAC, BCA, CAB, CBA}.

What are the number of ways of choosing A,B,C when order doesn’t matter?
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1
3

3
=








  The answer is {ABC}.  Order doesn’t matter, so that’s the only set.

Example Two.
What are the number of ways of arranging 2 of the letters A, B, C, when order matters?
  23P  =6.               They are {AB, AC, BA, BC, CA, CB}.

What are the number of ways of choosing 2 of the letters A, B, C, when order doesn’t
matter?

3
2

3
=








  The answer is {AB,BC, AC}.

Permutations of indistinct objects
In some cases, you have both distinct and indistinct objects.  In this case, you must

combine the permutation and combination formulae.  The number of distinct permutations of n
things taken r at a time where there are 1n  of one kind, 2n  of the second kind, up to  kn  of the

kth kind is:

!n!...n!n
!n

objects_indistinct_of_nspermutatio
k21

=

You can see that if all the objects are distinct, then every factor in the denominator is one and this
reduces to the original permutation formula of 1.2.

For example, how many ways can you arrange all elements of the following set
{A,AA,B,B,C}?

60
12
1

*
1

720
!1!2!3

!6
==

Probability
The probability of an event A is the sum of the weights of all sample points in A.

(definition 2.8, p. 28)   Therefore,

1)S(P

0)Ø(P

1)A(P0

=
=

≤≤

Example:  On an ordinary die, any number is equally likely to turn up.  The probability of
getting any particular number is 1/6.
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Example:  If, you have an illegal 6 sided die that is weighted to preferentially yield 6.  For
example, instead of yielding each number between 1 and 6 1/6 of the time,  it yields 6 half the
time, and the rest of the numbers 1/10 of the time.  The sum of the weights 5*(0.1) + 0.5 = 1.
Therefore, the probability of getting a 6, P(6) = 0.5.  P(1) = 0.1.

Additive Rules
The probability of Union  (theorem 2.10, page 31):

 ( ) ( )BAP)B(P)A(PBAP IU −+= (1.4)

Example:  The sample space consists of the letter number pairs, {A1, A2, B1}.
The probability of getting a pair with an A or a pair with a 1 is

( ) ( )

( )
( ) 13/13/23/21AP

3/11AP

3/2)1(P

3/2)A(P

1AP)1(P)A(P1AP

=−+=
=

=
=

−+=

U

I

IU

Corollary One:  if A and B are mutually exclusive:
( ) )B(P)A(PBAP +=U

Corollary Two:  if A1 A2….An are mutually exclusive:

( ) ∑
=

=
n

1i
in21 )A(PA...AAP UUU

Corollary Three:  If  A1 A2….An are mutually exclusive and include all of the sample
space,

( ) 1)S(P)A(PA...AAP
n

1i
in21 === ∑

=
UUU

Extension to three events

 
( ) ( ) ( ) ( )

( )CBAP                      

CBPCAPBAP)C(P)B(P)A(PCBAP

II

IIIUU

+
−−−++=

Example:  Consider the set of ten objects {cat, dog, wolf, tiger, oak, elm, maple, opal, ruby,
pearl}

What is the probability that you would randomly select a word that is (A) an animal OR that (B)
has 4 letters OR that (C) starts with a vowel.)  Two methods of solution.  First, You can pick
these out by hand.  There are 4 animals, 2 trees that start with vowels, and 2 minerals that have 4
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letters.  Therefore the probability is 0.8 or 80%.  The other method of solution is to use the
equation given above to find the probability of the union.

 
( ) ( ) ( ) ( )

( )CBAP                      

CBPCAPBAP)C(P)B(P)A(PCBAP

II

IIIUU

+
−−−++=

( )
10/80                      

10/1010/110/310/310/4CBAP

=+
−−−++=UU

Conditional Probability
The probability of an event B occurring when it is know that some event A has already

occurred is called a conditional probability, P(B|A), and is read, “the probability of B given A”,
and is defined by:

( ) ( )
( ) 0  P(A) for             
AP

BAP
A|BP >=

I
(1.5)

Example:  Using the above example of ten words.  What is the probability that we choose a (B)
three letter word given that we know that we have chosen an (A) animal.

( ) ( )
( ) 1/2

4/9
2/9

AP
BAP

A|BP ===
I

Independence/Multiplicative Rules
Two events are independent if and only if

( ) ( ) )A(PB|AP            and        )B(PA|BP == (1.6)

Substituting eqns (1.6) into equation (1.5) we have:
Two events are independent if and only if

( ) )B(P*)A(PBAP =I . (1.7)

Extension of the intersection rule to more than two events.  (Theorem 21.5, page 40)
If in an experiment, k321 A...A,A,A can occur then:

( ) ( ) ( ) ( ) ( )1k21k213121k21 A...AA|AP...AA|APA|APAPA...AAP −= IIIIIII

If the events are independent then the following is also true:
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( ) ( )∏
=

=
k

1i
ik21 APA...AAP III

These equations are simply repeated applications of equations (1.5) and (1.6).

Example Problems for Probability
There are four example given below.  In each example, let it be clear that we use three and only
three rules!  We use the rules for the union, the conditional probability, and the intersection.  To
restate these rules, we have:

 Union: ( ) ( )BAP)B(P)A(PBAP IU −+=

Conditional: ( ) ( )
( ) 0  P(A) for             
AP

BAP
A|BP >=

I

Intersection: ( ) ( ) ( ) ( ) ( )B|APBP  A|BPAPBAP ==I

Example 1:  You flip a coin twice.  What is the probability of getting heads on the second flip (B)
given that you got heads on the first flip (A)?  Are the events independent?

The probability of getting a head on the first flip is 0.5  The probability of getting a head
on the second flip is 0.5.   The intersection of A and B from the set {HH, HT, TH, TT} is 0.25.
We see that equation (1.7) is satisfied, so the equivalent statement of equation (1.6) is also
satisfied, yielding  

( ) ( )
( ) P(B)0.5 

0.5
0.25

AP
BAP

A|BP ====
I

Each flip of the coin is independent.

Example 2:  You have a bag with 3 lima beans and 2 pinto beans in it.  You draw 2 beans from it
randomly without replacement.  What is the probability that you draw a lima bean (B) given that
you already drew a lima bean on the first draw (A)? Are the events independent?

The easiest way to solve this problem is to list all the possible outcomes.
The probability for drawing a lima bean the first time (event A) is 3/5 = 0.6
The probability for drawing a pinto bean the first time is 2/5 = 0.4
If we draw a lima bean the first time, then there are 2 lima beans and 2 pinto beans.  In

that case the probability for drawing a lima bean the second time is 2/4 = 0.5 and the probability
for drawing a pinto bean the second time is 2/4 = 0.5.

If we draw a pinto bean the first time, then there are 3 lima beans and 1 pinto beans.  In
that case the probability for drawing a lima bean the second time is 3/4 = 0.75 and the probability
for drawing a pinto bean the second time is 1/4 = 0.25.

So we have four possible outcomes {LL, LP, PL, PP}.
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The probability of each outcome is given by the product of the probabilities of the events
in that outcome.  (This is the multiplicative rule.)

The probability of LL is 0.6*0.5 = 0.3.
The probability of LP is 0.6*0.5 = 0.3.
The probability of PL is 0.4*0.75 = 0.3.

The probability of PP is 0.4*0.1 = 0.1.
The individual probabilities then for {LL, LP, PL, PP}  are  {0.3, 0.3, 0.3, 0.1}.  With

these figures, we can write:
Now event A includes any outcome with L in the first draw, LL and LP.

6.03.03.0)LP(P)LL(P)A(P =+=+=

Event B includes any outcome with L in the first draw, LL and PL.  The sum of those two
probabilities is 0.3+0.3 = 0.6 so

6.03.03.0)PL(P)LL(P)B(P =+=+=

The intersection of A and B includes the outcome LL

3.0)LL(P)BA(P ==I

Given this information, we have that the conditional probability of B given A, (or the
probability that we draw a lima bean on the second draw, given that we drew a lima bean on the
first draw) is

( ) ( )
( ) 0.5 

0.6
0.3

AP
BAP

A|BP ===
I

Now, to check for independence,

( ) 6.0)B(P5.0A|BP =≠=

Therefore, the two experiments are not independent because equation (1.6) is not
satisfied.  Since equation (1.6) is equivalent to equation (1.7), we can also check equation (1.7) to
verify independence.

( ) 36.06.0*6.0)B(P*)A(P3.0BAP ==≠=I

Equation 1.7 also says that the events are not independent.

Example 3:  (example 2.33 in WMM):  One bag contains 4 White and 3 black marbles.  A second
bag contains three white and five black marbles.  One marble is randomly drawn from the first bag
and stuck in the second bag, unseen (A).  What is the probability of drawing a black ball from the
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second bag (B)?  Now A is composed of the event of drawing a white ball (W1) or a black ball
(B1) from the first bag.

You want:  ( ) ( )
( )

( ) ( )( )
( )1B1WP

B1BB1WP
AP

BAP
A|BP

U

IUII
==

The probability of A is 1.  You draw a marble; it is either black or white.  Continuing and using
equation (1.4)

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )B1BB1WPB1BPB1WPB1BB1WPA|BP IIIIIIUI −+==

The intersection of drawing a white ball first or a black ball first is 0.0, so the last term
drops.  Then substituting equation (1.5) into the above equation, we have:

( ) ( ) ( ) )1B|B(P)1B(P)1W|B(P)1W(PB1BPB1WPA|BP +=+= II

P(W1) = 4/7, P(B1)=3/7.  Once you draw a white marble from bag one and put it in bag two, the
probably of drawing a black marble from bag two is 5/9.  Similarly, once you draw a black marble
from bag one and put it in bag two, the probably of drawing a black marble from bag two is 6/9.
Plugging these numbers into the equation above:

( )

63
38

9
6

7
3

9
5

7
4

            

)1B|B(P)1B(P)1W|B(P)1W(PA|BP

=













+














=

+=

Example 4.
In sampling a population for the presence of a disease, the population is of two types:  Infected and Uninfected.
The results of the test are of two types:  Positive and Negative.  In rare disease detection, a high probability for
detecting a disease can still lead to more false positives than true positives.  Consider a case where a disease infects
1 out of every 100,000 individuals.  The probability for a positive test result given that the subject is infected is
0.99.  The probability for a negative test result given that the subject is uninfected is 0.999.

(1)  For testing a single person, define the complete sample space.

(2)  What is the probability of a false negative test result (a negative test result given that the subject is infected)?

(3)  What is the probability of being uninfected AND having a negative test result?

(4)  What is the probability of testing positive?

(5) Determine rigorously whether testing positive and having the disease are independent.

(6)  Determine the percentage of people who test positive who are really uninfected.

(7)  In a population of 250 million, with the infection rate given, how many people would you expect to be
(a) Infected-test Positive, (b)  Infected-test Negative, (c )  Uninfected-test Positive, (d) Uninfected-test negative.

Solution:
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We are told:
510)I(P −=

999.0
)U(P

)UN(P
)UN(P ==

I

99.0
)I(P

)IP(P
)IP(P ==

I

(1)  For testing a single person, define the complete sample space.

The sample space is { }UN,UP,IN,IPS =  where I = Infected, U=Uninfected, P=positive test result,

N=negative test result.

The Venn Diagram looks like this:

PositiveInfectedI tiveegaNInfectedI

PositiveUninfectedI tiveegaNUnInfectedI

When you have a simple sample space like this, you can see some additional constraints on the system, in addition
to the union, conditional, and intersection rules.  You will need some of these additional constraints to solve the
problems below.

For example, if a person tests positive, they are either infected or uninfected.  Therefore, using the union
rule we have:

( ) [ ] [ ])UP()IP(P)UP(P)IP(P)UP()IP(PPP IIIIIIUI −+==

There is no intersection between being infected and uninfected, therefore:

( ) )UP(P)IP(PPP II +=

We can write three other analogous contraints:

( ) )UN(P)IN(PNP II +=
( ) )NU(P)PU(PUP II +=
( ) )NI(P)PI(PIP II +=

Remember, these four rules only work for simple (but common) Venn Diagrams like the one shown above.
Also consider that the probability of being infected given a person is positive plus the probability of being

uninfected given a person is positive is 1.  A person is either infected or uninfected, regardless of whether they
tested positive or negative.  We can write this as.

( ) ( ) 1P|UPP|IP =+

This is just a restatement of the fact that the sums of the probabilities must be equal to 1.  Again, three analogous
statements can be made:

( ) ( ) 1N|UPN|IP =+
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( ) ( ) 1U|NPU|PP =+
( ) ( ) 1I|NPI|PP =+

Remember, these four rules only work for simple (but common) Venn Diagrams like the one shown above.

In solving the problems, below, remember we have this group of rules.  There are many ways to solve some of the
problems.  We just go looking for the one that seems easiest.

(2)  What is the probability of a false negative test result (a negative test result given that the subject is infected)?

We want: ( )
)I(P

)IN(P
INP

I
=  so we need the two factors on the right hand side.

We have been given the denominator.  In order to find the numerator, we must use the other given:

99.0
)I(P

)IP(P
)IP(P == I

which rearranges for the intersection of P AND I

( )( ) 55 1099.099.010)IP(P)I(P)IP(P −− ⋅==⋅=I
We must realize that the probability of I is the union of IP and IN groups.
So using the definition of the Union, we have:

[ ] [ ])NI()PI(P)NI(P)PI(P)NI()PI(P)I(P IIIIIIUI −+==
The result cannot be both positive and negative:

[ ] 0)NI()PI(P =III
So,

( ) 755 101099.010)PI(P)I(P)NI(P −−− =⋅−=−= II
Then we can plug into our original equation:

( ) 01.0
10

10
)I(P

)IN(P
INP

5

7

===
−

−I

OR, an alternative solution, relies on us recognizing:

( ) ( ) 1IPPINP =+  because every test comes out positive or negative.

( ) ( ) 01.099.01IPP1INP =−=−=

(3)  What is the probability of being uninfected AND having a negative test result?

We want )UN(P I
we can obtain this from either:
(a)  the UNION RULE:

[ ])UN()IN(P)N(P IUI=
[ ])UN()IN(P)UN(P)IN(P)N(P IIIII −+=

[ ] 0)UN()IN(P =III
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)UN(P)IN(P)N(P II +=
)IN(P)N(P)UN(P II −=

but we don’t know )IN(P I  and we don’t know )N(P
or (b)  the conditional probability rule:

)N(P
)UN(P

)NU(P
I

=

)NU(P)N(P)UN(P ⋅=I

but we don’t know )NU(P  and we don’t know )N(P
or (c) the conditional probability rule:

999.0
)U(P

)UN(P
)UN(P ==

I

999.0)U(P)UN(P)U(P)UN(P ⋅=⋅=I

I like choice (c) because we are given 999.0)UN(P =  and we know

99999.0101)I(P1)U(P 5 =−=−= −
 so

( )( ) 99899001.0999.099999.0)UN(P)U(P)UN(P ==⋅=I

 (4)  What is the probability of testing positive?

We want )P(P

We can find )P(P  either by:

(a) the fact that the sum of the probabilities must be one

1)N(P)P(P =+  but we don’t know )N(P
)N(P1)P(P −=

(b) the conditional probability distribution:

)P(P
)IP(P

)PI(P
I

=  but we don’t know )PI(P

(c) the conditional probability distribution:

)P(P
)UP(P

)PU(P
I

=  but we don’t know )PU(P

(d) the sum of the probabilities must be one and a different conditional probability:

)N(P1)P(P −=

)N(P
)UN(P

)NU(P
I

=
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)NU(P
)UN(P

1)N(P1)P(P
I

−=−=  but we don’t know )NU(P

(e) the sum of the probabilities must be one and a different conditional probability:

)N(P1)P(P −=

)N(P
)IN(P

)NI(P
I

=

)NI(P
)IN(P

1)N(P1)P(P
I

−=−=  but we don’t know )NI(P

(f)  the Union rule:

[ ])UP()IP(P)P(P IUI=
[ ])UP()IP(P)UP(P)IP(P)P(P IIIII −+=

[ ] 0)UP()IP(P =III

)UP(P)IP(P)P(P II +=
combine with conditional probabilities that we do know:

)U|P(P*)U(P)I|P(P*)I(P)P(P +=

I like choice (f):

)U|P(P99999.099.010)P(P 5 ⋅+⋅= −

we can get the last factor by considering (as we did in part (2))

( ) ( ) 1UNPUPP =+  because all tests are either positive or negative.

( ) ( ) 001.0999.01UNP1UPP =−=−=
so

00100989.0001.099999.099.010)P(P 5 =⋅+⋅= −

(5) Determine rigorously whether testing positive and having the disease are independent.

If )P(P  and )I(P are independent:

)I(P)P(P)IP(P ⋅=I
55 1000100989.01099.0 −− ⋅=⋅

NOT INDEPENDENT.

(6)  Determine the percentage of people who test positive but who are really uninfected.

We want: 
)P(P

)UP(P I

%99990196952.0
00100989.0

1099999.0
)P(P

)UP(P 3

==
⋅

=
−I
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Despite the high accuracy of the test 99% of those people who test positive are actually uninfected.

(7)  In a population of 250 million, with the infection rate given, how many people would you expect to be
(a) Infected-test Positive, (b)  Infected-test Negative, (c )  Uninfected-test Positive, (d) Uninfected-test negative.

These are four intersections:

From part (5) we know:
51099.0)IP(P −⋅=I

31099999.0001.099999.0)UP(P −⋅=⋅=I
From part (2) we know

( ) 755 101099.010)IP(P)I(P)IN(P −−− =⋅−=−= II
From part (3) we know

( )( ) 99899001.0999.099999.0)UN(P)U(P)UN(P ==⋅=I

These should sum to 1.0 and they do.
Out of 250 million people, the number who are infected and test positive are: 2475.
Out of 250 million people, the number who are infected and test negative are: 25.
Out of 250 million people, the number who are uninfected and test positive are: 249,997.5
Out of 250 million people, the number who are uninfected and test negative are: 249.7475 million


