
ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

1

Lecture 39,40,42 - Numerical Integration

Table of Contents

1. Why is it important to be able to numerically integrate equations? 1
2. Trapezoidal Rule 1
3. Simpson’s 1/3 Rule 5
4. Simpson’s Higher Order Methods 8
5. Quadrature 10
6. Example: Comparison of Methods 12
7. MATLAB - integrate.m 15
8. Numerical Integration of Data 18
9. MATLAB - GUIs 18
10. Round-off Errors (currently not included) 19

39.1 Why is it important to be able to numerically integrate equations?

There are many instances in the engineering and the sciences where it is necessary to evaluate integrals.
One case where you may require numerical integration occurs when the integrand may be of a functional form that
you do not know how to integrate analytically. In this case, your only recourse is to numerically evaluate the
integral. A second case where you may require numerical integration occurs when you need to integrate a function
given by data points. In this case, there is no analytical solution to the integral and again you require numerical
methods.

39.2 Trapezoidal Rule

The Trapezoidal rule gets it’s name from the use of trapezoids to approximate integrals. Consider that

you want to integrate a function,)x(f , from a to b. The trapezoidal rule says that

the integral of that function can be approximated by a trapezoidal with a base of length (b-a) and sides of height

)a(f and)b(f . Graphically, the trapezoidal rule is represented below.

0.0

6.0

0.0 0.5 1.0 1.5 2.0

x

f(
x)

a b

f(b)

f(a)

area of integral accounted
for by trapezoidal rule

area of integral not accounted
for by trapezoidal rule

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

2

In terms of equations the, single-interval trapezoidal rule is expressed as

()()ab)b(f)a(f
2
1

dx)x(f
b

a

−+≈∫ (39.1)

The right hand side of equation (39.1) is the expression for the area of a trapezoid, shown in the figure above.
Now, it is quite easy to imagine a case where the single-interval trapezoidal rule is going to give a terrible estimate.
Consider the following plot:

0.0

6.0

12.0

18.0

24.0

30.0

0.0 0.5 1.0 1.5 2.0

x

f(
x)

a b

f(b)

f(a)

area of integral accounted
for by trapezoidal rule

area of integral not accounted
for by trapezoidal rule

The method that is used to obtain a better estimate of the integral using the trapezoidal rule is to break up

the range from a to b into n smaller intervals, each of size h where

n
ab

h
−

= (39.2)

Graphically, this is depicted below for n = 4

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

3

0.0

6.0

12.0

18.0

24.0

30.0

x

f(
x)

a b

f(b)

f(a)

area of integral accounted
for by trapezoidal rule

area of integral not accounted for by
trapezoidal rule

Visually, one can detect that even breaking the range into 4 intervals has substantially increased the
accuracy of the trapezoidal rule. Also note that each interval is a trapezoid. The area of each of these trapezoids,

iA , is

())x(f)x(f
2
h

A hiii ++= (39.3)

where the position of the left side of the ith trapezoid is ix , given by a linear interpolation formula between a to

b for i = 1 to n intervals

h*)1i(ax i −+= (39.4)

The integral is given by the summation of the areas of all the trapezoids:

()∑∫
=

++≈
n

1i
hii

b

a

)x(f)x(f
2
h

dx)x(f (39.5)

The quantity)x(f i appears twice in the summation of equation (39.5). It appears once as the left-hand-side of

the trapezoid that forms the ith interval and it occurs once as the right-hand-side of the trapezoid that forms the i-

1th interval. This is true of all)x(f i except the endpoints,)a(f and)b(f . For these reasons, equation (39.5)

can be algebraically manipulated to yield:









++≈ ∑∫

=

n

2i
i

b

a

)x(f2)b(f)a(f
2
h

dx)x(f (39.6)

This is the most common form of the mutliple-interval trapezoidal rule. The accuracy of the trapezoidal rule
increases as n increases.

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

4

Here is a MATLAB code that will implement the trapezoidal rule. This code is located in a file called
trapezoidal.m. It is executed at the command line prompt by typing:

>> trapezoidal(a,b,nintervals)

where a and b are the lower and upper limits of integration. nintervals is the number of intervals. The function
you wish to integrate is listed as the last line of the code. In this sample, f(x) = x.

%
% Trapezoidal Method
%
function integral = trapezoidal(a,b,nintervals);
dx = (b-a)/nintervals;
npoints = nintervals + 1;
x_vec = [a:dx:b];
integral = funkeval(x_vec(1));
for i = 2:1:nintervals
 integral = integral + 2*funkeval(x_vec(i));
end
integral = integral + funkeval(x_vec(npoints));
integral = 0.5*dx*integral;
fprintf(1,'\nUsing the Trapezoidal method \n');
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals);
fprintf(1,'the integral is %e \n \n',integral);

function f = funkeval(x)
f = x;

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

5

39.3 Simpson’s 1/3 Rule

Simpson’s 1/3 Rule is another technique used for numerical integration. When we used the single-

interval trapezoidal rule to estimate the integral of)x(f over the range of a to b , we

drew a straight line from the point ())a(f,a to ())b(f,b . A more accurate approach might me to increase the

level of the polynomial approximating the curve from linear (a polynomial of order one, as used in the trapezoidal
rule) to quadratic (a polynomial of order two, as used in Simpson’s 1/3 rule).

The application of Simpson’s 1/3 rule to a curve is shown graphically below.

0.0

5.0

10.0

15.0

20.0

-5.0 5.0

x

f(
x)

area of integral not accounted for by trapezoidal rule

x3

f(x3)f(x1)

x2

f(x2)

area of integral accounted for by trapezoidal rule

x1

The parabolic curve which approximates the function matches the function at 3 points, the 2 endpoints and the
centerpoint. (In the trapezoidal rule, the approximating curve was a line which matched the function only at the
end-points.)

Derivation of the Simpson’s 1/3 Rule for Numerical Integration.

We have three points, 1x , 2x and 3x . 2x and 3x are related to 1x by

xxx 12 ∆+=
x2xx 13 ∆+=

We also know the function value evaluated at these three points,)x(f 1 ,)x(f 2 ,)x(f 3 .

We are going to fit a parabola to these three points. The general equation of a parabola is a quadratic polynomial.
Each of the three points must fit on the parabola. (Recall from the regression analysis that, if we have three points,
we can fit them perfectly with the three coefficients of a quadratic polynomial.)

)x(fcbxaxeqn 11
2
11 −++=

)x(fcbxaxeqn 22
2
22 −++=

)x(fcbxaxeqn 33
2
33 −++=

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

6

So we have three unknowns: a, b, and c. In fact, we have a system of three linear equations and three unknowns.
So the equations are of the form:

 bxA =

where



















=
1xx

1xx

1xx

A

3
2
3

2
2
2

1
2
1

,
















=

c

b

a

x ,
















=

)x(f

)x(f

)x(f

b

3

2

1

The solution to this system of equations is:

[] [] []

[] [] []




























∆

∆++∆+−∆+∆+

∆

∆++∆+−∆+
−

∆

+−

=















=

2
1

1
231

1
221

1
21

2
131211

2
321

x2

xx x)x(f xx4 2x)x(f x 2 xx3x)x(f

x2

x x 2)x(f x 4 x 4)x(f x 3 x2)x(f

x2

)x(f)x(f2)x(f

c

b

a

x

At this point we have the coefficients of our parabola.

Now we want to integrate the parabola from 1x to 3x .

()∫ ++=
3x

1x

2
Simp dxcbxaxI

3x

1x

23

Simp cx
2

bx
3

ax
I












++=
















++−
















++= 1

2
1

3
1

3

2
3

3
3

Simp cx
2

bx

3

ax
cx

2

bx

3

ax
I

We substitute in the formulae for a, b, and c. We also substitute in x2xx 13 ∆+= . After a lot of extremely

messy but simple algebra, we find that the expression simplifies to:

[])x(f)x(f4)x(f
3
x

I 321Simp ++
∆

=

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

7

This is Simpson’s 1/3 rule where we have only 2 intervals (one parabola). If we divide the interval up into many
intervals, then we have to sum each of the integrated intervals up. Just as was the case with the trapezoidal rule,
the first and last point appear only once. Each interior point at the beginning or end of a parabola will be counted
twice. Each point in the center of the parabola is counted once, but has a weighting factor of four. So, our final
Simpson’s 1/3 rule formula for n-intervals (n+1 points) is:



















+++
∆

= +
−

==
∑∑)x(f)x(f2)x(f4)x(f

3
x

I 1n

1n

odd
3i

2

n

even
2i

21Simp

Again, as was the case for the Trapezoidal rule, Simpson’s 1/3 rule provides greater accuracy if the range
is broken up into a number of intervals. For the Simpson’s 1/3 rule, the number of intervals, n , must be even
because, as you can see in the above plot, each curve fit requires 2 intervals.

The Simpson’s 1/3 rule requires an even number of intervals, because it needs two intervals per parabola.
For the same number of intervals, the Simpson’s 1/3 rule is more accurate than the Trapezoidal rule

because we used a high-order polynomial to fit the original function.

Here is a MATLAB code that will implement Simpson’s 1/3 rule. This code is located in a file called
simpson2.m because this is Simpson’s second-order method. (Remember, we fit the curve with a second-order
(quadratic) polynomial.) It is executed at the command line prompt by typing:

>> simpson2(a,b,nintervals)

where a and b are the lower and upper limits of integration. nintervals is the number of intervals. The function
you wish to integrate is listed as the last line of the code. In this sample, f(x) = x.

%
% Simpson's Second Order Method (the 1/3 Rule)
%
function integral = simpson2(a,b,nintervals);
if (mod(nintervals,2) ~= 0)
 fprintf('Simpsons Second Order method requires an even number of intervals.\n');
else

dx = (b-a)/nintervals;
npoints = nintervals + 1;

 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));

integral_4 = 0.0;
for i = 2:2:nintervals

 integral_4 = integral_4 + funkeval(x_vec(i));
end
integral_2 = 0.0;
for i = 3:2:nintervals-1

 integral_2 = integral_2 + funkeval(x_vec(i));
end

 integral = integral_first + integral_last + 4.0*integral_4 + 2.0*integral_2;
 integral = dx/3*integral;

fprintf(1,'\nUsing the Simpsons Second Order method \n');
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals);
fprintf(1,'the integral is %e \n \n',integral);

end

function f = funkeval(x)
f = x;

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

8

39.4 Simpson’s Higher Order Methods

What we have presented above are the lowest two polynomial approximations. The trapezoidal rule used
a first-order (linear) curve to model the function and the Simpson’s 1/3 Rule used a second-order (quadratic) curve
to model the function. If we wanted to, we could derive equations for any arbitrary higher order polynomial.

We could repeat the derivation for Simpson’s rule where we used a third-order (cubic) polynomial to
obtain the solution.

The result for a single curve (three intervals) is

[])x(f)x(f3)x(f3)x(f
8

x3
I 4321Simp +++

∆
=

If we want to use many intervals, then we need to add up these individual components. We must also use a number
of intervals that is a multiple of 3.












++++

∆
= +

−

==

−

=
∑∑∑)x(f)x(f2)x(f3)x(f3)x(f

8
x3

I 1n

2n

10,7,4i
2

n

9,6,3i
2

1n

8,5,2i
21Simp

Here is a MATLAB code that will implement Simpson’s Third Order Method. This code is located in a
file called simpson3.m . It is executed at the command line prompt by typing:

>> simpson3(a,b,nintervals)

where a and b are the lower and upper limits of integration. nintervals is the number of intervals. The function
you wish to integrate is listed as the last line of the code. In this sample, f(x) = x.

%
% Simpson's Third Order Method
%
function integral = simpson3(a,b,nintervals);
if (mod(nintervals,3) ~= 0)
 fprintf('Simpsons Third Order method requires a # of intervals that is a multiple of 3.\n');
else

dx = (b-a)/nintervals;
npoints = nintervals + 1;

 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));

integral_3a = 0.0;
for i = 2:3:nintervals-1

 integral_3a = integral_3a + funkeval(x_vec(i));
end
integral_3b = 0.0;
for i = 3:3:nintervals

 integral_3b = integral_3b + funkeval(x_vec(i));
end
integral_2 = 0.0;
for i = 4:3:nintervals-2

 integral_2 = integral_2 + funkeval(x_vec(i));
end

 integral = integral_first + integral_last + 3.0*integral_3a ...
 + 3.0*integral_3b + 2.0*integral_2;
 integral = 3.0*dx/8.0*integral;

fprintf(1,'\nUsing the Simpsons Third Order method \n');
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals);
fprintf(1,'the integral is %e \n \n',integral);

end

function f = funkeval(x)
f = x;

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

9

We could repeat the derivation for Simpson’s rule where we used a fourth-order (quartic) polynomial to
obtain the solution.

The result for a single curve (four intervals) is

[])x(f7)x(f32)x(f12)x(f32)x(f7
45

x2
I 54321Simp ++++

∆
=

If we want to use many intervals, then we need to add up these individual components. We must also use a number
of intervals that is a multiple of 4.












+++++

∆
= +

−

==

−

=

−

=
∑∑∑∑)x(f7)x(f14)x(f32)x(f12)x(f32)x(f7

45
x2

I 1n

3n

13,9,5i
2

n

12,8,4i
2

1n

11,7,3i
2

2n

10,6,2i
21Simp

Here is a MATLAB code that will implement Simpson’s Fourth Order Method. This code is located in a
file called simpson4.m . It is executed at the command line prompt by typing:

>> simpson4(a,b,nintervals)

where a and b are the lower and upper limits of integration. nintervals is the number of intervals. The function
you wish to integrate is listed as the last line of the code. In this sample, f(x) = x.

%
% Simpson's Fourth Order Method
%
function integral = simpson4(a,b,nintervals);
if (mod(nintervals,4) ~= 0)
 fprintf('Simpsons 4th Order method requires a # of intervals that is a multiple of 4.\n');
else

dx = (b-a)/nintervals;
npoints = nintervals + 1;

 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));

integral_32a = 0.0;
for i = 2:4:nintervals-2

 integral_32a = integral_32a + funkeval(x_vec(i));
end
integral_32b = 0.0;
for i = 4:4:nintervals

 integral_32b = integral_32b + funkeval(x_vec(i));
end
integral_12 = 0.0;
for i = 3:4:nintervals-1

 integral_12 = integral_12 + funkeval(x_vec(i));
end
integral_14 = 0.0;
for i = 5:4:nintervals-3

 integral_14 = integral_14 + funkeval(x_vec(i));
 end
 integral = 7.0*integral_first + 7.0*integral_last + 32.0*integral_32a ...
 + 32.0*integral_32b + 12.0*integral_12 + 14.0*integral_14;
 integral = 2.0*dx/45.0*integral;

fprintf(1,'\nUsing the Simpsons Fourth Order method \n');
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals);
fprintf(1,'the integral is %e \n \n',integral);

end

function f = funkeval(x)
f = x;

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

10

39.5 Quadrature

Quadrature takes a slightly different approach to the numerical evaluation of integrals. Quadrature is
based on the assumption that we can get a better estimate of the integral with fewer function evaluations if we use
non-equally spaced points at which to evaluate the function. The determination of these points and the weighting
coefficients that correspond to each data point follows a methodical procedure. We do not derive them here.

The integral for the nth order Gaussian Quadrature is given by:

()∑
=

=
n

1i
iiquad xfcI

The particular values of the weighting constants, c, and the points where we evaluate the function, x, can be taken
from a table in any numerical methods text book.

The advantage of the quadrature is that it can be quite accurate for very few function evaluations. Thus it
is much faster and if need to repeatedly evaluate integrals it is the method of choice. For the evaluation of a couple
integrals, the Simpson’s Rules are better because we know we can increase accuracy by increasing the number of
intervals used.

Here, we provide a code which performs Gaussian Quadrature for 2nd to 6th order. This code is located in
a file called gaussquad.m . It is executed at the command line prompt by typing:

>> gaussquad(a,b,norder)

where a and b are the lower and upper limits of integration. norder is the order of the approximation. The
function you wish to integrate is listed as the last line of the code. In this sample, f(x) = R/(x-b).

You will see that most of the code is simply a table of weighting coefficients and x values.

%
% Gaussian Quadrature
%
function integral = gaussquad(a,b,norder);
if (norder < 2 | norder > 6)
 fprintf('This code only works for order between 2 and 6\n');
else
 a0 = 0.5*(b+a);
 a1 = 0.5*(b-a);
 if (norder == 2)
 c(1) = 1.0;
 c(2) = c(1);
 x_table(1) = -0.577350269;
 x_table(2) = -x_table(1);
 elseif (norder == 3)
 c(1) = 0.555555556;
 c(2) = 0.888888889;
 c(3) = c(1);
 x_table(1) = -0.774596669;
 x_table(2) = 0.0;
 x_table(3) = -x_table(1);
 elseif (norder == 4)
 c(1) = 0.347854845;
 c(2) = 0.652145155;
 c(3) = c(2);
 c(4) = c(1);
 x_table(1) = -0.861136312;
 x_table(2) = -0.339981044;
 x_table(3) = -x_table(2);
 x_table(4) = -x_table(1);

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

11

 elseif (norder == 5)
 c(1) = 0.236926885;
 c(2) = 0.478628670;
 c(3) = 0.568888889;
 c(4) = c(2);
 c(5) = c(1);
 x_table(1) = -0.906179846;
 x_table(2) = -0.538469310;
 x_table(3) = 0.0;
 x_table(4) = -x_table(2);
 x_table(5) = -x_table(1);
 elseif (norder == 6)
 c(1) = 0.171324492;
 c(2) = 0.360761573;
 c(3) = 0.467913935;
 c(4) = c(3);
 c(5) = c(2);
 c(6) = c(1);
 x_table(1) = -0.932469514;
 x_table(2) = -0.661209386;
 x_table(3) = -0.238619186;
 x_table(4) = -x_table(3);
 x_table(5) = -x_table(2);
 x_table(6) = -x_table(1);
 end
 integral = 0.0;
 for i = 1:1:norder
 x(i) = a0 + a1*x_table(i);
 f(i) = funkeval(x(i));
 integral = integral + c(i)*f(i);
 end
 integral = integral*a1;
 fprintf(1,'\nUsing %i order Gaussian Quadrature \n', norder);

fprintf(1,'to integrate from %f to %f \n',a,b);
fprintf(1,'the integral is %e \n \n',integral);

end

function f = funkeval(x)
R = 8.314;
b = 4.306e-5;
f = R/(x-b);

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

12

39.6 Example: Comparison of Methods

We want to evaluate the change in entropy of methane for an isothermal expansion or compression. We
will use the van der Waal’s equation of state.

The van der Waal’s equation of state is:

2V

a
bV

RT
P −

−
= (39.9)

where P is pressure (Pa), T is temperature (K), V is molar volume (m3/mol), R is the gas constant (8.314

J/mol/K = 8.314 Pa*m3/mol/K), a is the van der Waal’s attraction constant (.2303 Pa*m6/mol2 for methane) and
b is the van der Waal’s repulsion constant (4.306e-5 m3/mol for methane). The change in entropy for an
isothermal expansion without phase change is

′







∂
∂

=∆ ∫
′

Vd
T
P

S
2V

1V V

(39.10)

The partial derivative of the pressure with respect to temperature at constant molar volume for a van der Waal’s
gas is (from equation 39.9)

bV
R

T
P

V −
=








∂
∂

(39.11)

so the change in entropy is

′











−′=∆ ∫ Vd
bV

R
S

2V

1V

(39.12)

We can analytically evaluate this integral so as to provide a basis of comparison with our numerical integrals.









−
−

=∆
bV
bV

lnRS
1

2 (39.13)

The pressure as a function of molar volume is shown below for van der Waal’s methane at 298 K.

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

13

1.0E+03

5.1E+04

1.0E+05

1.5E+05

0.00 0.02 0.04 0.06 0.08 0.10

V (meter3/mole)

P
re

ss
u

re
 (

P
as

ca
ls

)

VT
P









∂
∂

as a function of molar volume is shown below for van der Waal’s methane at 298 K. This is the

function we will need to numerically integrate.

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

0.00 0.02 0.04 0.06 0.08 0.10

V (meter3/mole)

d
P

/d
V

 (
P

as
ca

ls
/m

et
er

3)

Let’s expand the gas from 0.03 m3/mol to .1 m3/mol. We compare results using the analytical solution,
and several numerical methods. We see that as we increase the number of intervals, we increase the accuracy of
our solution. We also see that as we increase the order of the method, the accuracy increases.

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

14

Technique # of intervals)K/mol/J(S∆ percent error
analytical
(equation 39.13)

- 10.0182 0.0

Trapezoidal 1 12.62476 2.60E+01
Trapezoidal 2 10.79212 7.73E+00
Trapezoidal 3 10.38034 3.61E+00
Trapezoidal 4 10.22639 2.08E+00
Trapezoidal 10 10.05242 3.42E-01
Trapezoidal 100 10.01854 3.44E-03
Trapezoidal 1000 10.01819 3.44E-05
Trapezoidal 10000 10.01819 3.44E-07
Trapezoidal 100000 10.01819 3.44E-09

Simpson's 1/3 2 10.18124 1.63E+00
Simpson's 1/3 4 10.03781 1.96E-01
Simpson's 1/3 10 10.01892 7.30E-03
Simpson's 1/3 100 10.01819 8.17E-07
Simpson's 1/3 1000 10.01819 8.18E-11

Simpson’s 3rd Order 3 10.09979 8.14E-01
Simpson’s 3rd Order 6 10.02738 9.18E-02
Simpson’s 3rd Order 9 10.02040 2.21E-02
Simpson’s 3rd Order 99 10.01819 1.91E-06
Simpson’s 3rd Order 999 10.01819 1.85E-10

Simpson’s 4th Order 4 10.02825 1.00E-01
Simpson’s 4th Order 8 10.01869 4.96E-03
Simpson’s 4th Order 100 10.01819 3.39E-09
Simpson’s 4th Order 1000 10.01819 3.55E-14

quad (MATLAB) ? 10.01828 9.20e-04
quad8 (MATLAB) ? 10.01819 3.36e-08

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

15

39.7 Numerical Integration - MATLAB

MATLAB has two built-in numerical integration routine called quad and quad8, which use quadrature. I have
built a routine called “integrate.m” which will integrate either an analytical function in the file ‘fn.m’ or numerical
data in the file ‘file.anything.dat’ using your choice of trapezoidal, Simpson’s 1/3 Rule, or MATLAB’s quad.

The arguments of the integrate.m routine can be seen by moving to the directory where the integrate.m file is
located and typing help integrate

» help integrate

integrate(type,n,a,b,m,'fname')
This script performs one dimension integration of a function or of data

type = 1, integrate a function in the file 'fn.m'
type = 2, integrate data in the file 'fname'
n = number of intervals
a = lower bound of integration
b = upper bound of integration
m = integration type

if m = 1, then use trapezoidal rule
if m = 2, then use Simpson's 1/3 rule
if m = 3, then use Gaussian quadrature

fname is the name of the data file
 For this program, the fname must be 'file.anything.dat' !!!
 (You need single quotes around the filename.)

For type =1, fname is not used.
(But something must be entered anyway.)

For type = 2, a, b, and m inputs are not used.
(But something must be entered anyway.)
The input file must have 2 columns.
The first column is the dependent variable given in evenly spaced intervals.
The second column gives values of the function to be integrated.
There must be n+1 rows in the file.

Example #2.

b0 = 300.0;
 b1 = 2.0;
 b2 = -10.0;
 b3 = 0.0;
 b4 = +0.1;
 p = b0 + b1*v + b2*v^2 + b3*v^3 + b4*v^4;

which looks like

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

16

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

50

100

150

200

250

300

350

Find ∫
−

10

10

Pdv

Exact analytical solution:

10

10

543210

10 5
v*b4

4

v*b3

3
v*b2

2

v*b1
 v*b0 Pdv

−−

++++=∫

333.3333667.1566667.1766Pdv
10

10

=−−=∫
−

The data in the following table was generated in MATLAB using the integrate.m routine with arguments
along the lines of:

integrate(1,100,-10,10,2,'fn')

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

17

Technique n)K/mol/J(S∆ percent error
analytical
(equation 39.13)

- 3333.333 0.0

Trapezoidal 1 6000 80.00
Trapezoidal 2 6000 80.00
Trapezoidal 3 4683.1 40.49
Trapezoidal 4 4125 23.75
Trapezoidal 10 3465.6 3.97
Trapezoidal 100 3334.7 0.04
Trapezoidal 1000 3333.3 0.0
Trapezoidal 10000 3333.3 0.0
Trapezoidal 100000 3333.3 0.0

Simpson's 1/3 2 6000 80.00
Simpson's 1/3 4 3500 5.00
Simpson's 1/3 10 3337.6 0.13
Simpson's 1/3 100 3333.3 0.0

quad (MATLAB) ? 3333.3 0.0

ChE 301 Lecture Notes, Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, 06/01/98 (updated 03/01)

18

39.8 Numerical Integration of Data

Example #3. Integrating Data

Integrating data is no different from integrating a function. Here the function has already been evaluated for us.
We can use the trapezoidal rule or the Simpson’s 1/3 rule. The number of intervals is defined as one less than the
number of data points.

Consider the data in the file ‘file.test.dat’
f(x) x
1.00 0.0
1.01 0.1
1.04 0.2
1.09 0.3
1.16 0.4
1.25 0.5
1.36 0.6
1.49 0.7
1.64 0.8
1.81 0.9
2.00 1.0

Integrate this data using the trapezoidal rule from x = 0.0 to 1.0
There are eleven data points and thus ten intervals.
The MATLAB command with the integrate.m routine is used as follows:

integrate(2,10,0,1,1,'file.test.dat')

y = 1.3333

Hopefully, it is clear that we are performing the same operations regardless of whether we have a function or data
to integrate. When we have data, we ought to think of it as having the function already evaluated for us.

39.9 MATLAB - GUIs

A GUI (pronounced gooey) is a graphical user interface, which makes using codes simpler. There is a
GUI for numerical integration, developed by Dr. Keffer, located at:
http://clausius.engr.utk.edu/webresource/index.html .

You have to download and unzip the GUI. Then, when you are in the directory where you extracted the
files, you type:

>>integrate_gui

at the command line prompt to start the GUI.

I give no additional instructions here because a good GUI is self-explanatory. If you understand the methods in
this lecture packet, you will have no problem using the GUI.

