Exam IV: Administered: May 9, 2000 120 points

Problem (1) (20 points)

Perform one complete Newton-Raphson iteration on the system of equations:

y = exp(x) $y^2 + x^3 = 10$

Use (x,y) = (1,1) as your initial guess.

Problem (2) (20 points)

Consider the data that describes the concentration of product (mole/liter) when comparing two different company's feed-stocks. Each experiment was done with 9 replicates. We input the data (18 data points) into the MATLAB program *anova_lfactor.m* and obtained the following output:

Ho: all treatments are equal Reject Ho if 0.46 >> f(1, 16)Hypothesis NOT Rejected for 90 percent confidence interval (0.46 < 4.50) pvalue = 5.21e-00190 percent C.I. on the 1 treatment: 1.20e+000 < 1.28e+000 < 1.36e+00090 percent C.I. on the 2 treatment: 1.24e+000 < 1.32e+000 < 1.40e+00090 percent C.I. on the 1 - 2 treatment diff.: -1.59e-001 < -4.44e-002 < 7.03e-002

Based on this output, answer the following questions.

(a) Do the companies offer significantly different feed-stocks?

(b) At what confidence interval does the null hypothesis switch from being rejected to not rejected?

(c) If vendor 1 claims that his feed-stock will yield a product concentration 0.07 mol/liter higher than vendor 2, is this claim valid?

(d) If vendor 2 claims that his feed-stock will yield a product concentration 0.1 mol/liter higher than vendor 1, is this claim valid?

(e) Explain your answers to (c) and (d).

Problem (3) (20 points)

Consider the function described by the formula and plot below:

Integrate this function from 0.5 to 1.5 using the Trapezoidal rule and 2 intervals.

Problem (4) (20 points)

From historical data, we know that a process produces a batch of polymer with an average molecular weight of 500,000 and a standard deviation of 10,000.

(a) What is the probability of finding a polymer with a molecular weight less than 480,000?

(b) 75% of the polymers described above have a molecular weight greater than y. Find y.

Problem (5) (20 minutes - 20 points)

Consider an nxn matrix, J, with rank = n. Indicate which of any of the following statements are true.

(a) The inverse of \underline{J} exists.

- (b) At least 2 rows of \underline{J} are linearly dependent.
- (c) The determinant of \underline{J} is non-zero.
- (d) There is a unique solution to $J\underline{x} = \underline{b}$ for any real nx1 vector, \underline{b} .

(e) The reduced row echelon form of \underline{J} will not have any rows completely filled with zeroes.

- (f) The rank of J is n.
- (g) The matrix \underline{J} has less than n non-zero eigenvalues.

Problem (6) (20 points)

Consider a one-dimensional rod of length L. The end of the rod at x=0 is maintained at a constant temperature T_0 . The end of the rod at x=L is maintained at a constant temperature T_L . The rod is metal and has a thermal conductivity, k, density, ρ , and heat capacity, C_p . Between the two ends, the rod loses heat to the surroundings which are at a constant temperature T_s . The ordinary differential equation which describes the steady state temperature profile in the rod can be derived from an energy balance and is given as

$$0 = \frac{k}{\rho C_{p}} \left(\frac{\partial^{2} T}{\partial x^{2}} \right) + \frac{hA(T_{s} - T)}{\rho C_{p}V}$$

where A is the surface area of the rod exposed to the surroundings, V is the volume of the rod, and h is the heat transfer coefficient between the rod and surroundings.

Your task is to find the steady state temperature profile.

- (a) Identify the independent variable
- (b) Identify the dependent variable
- (c) Identify the O.D.E. as linear or nonlinear
- (d) Identify the order of the differential equation
- (e) Identify the type of problem: Initial-Value Problem or Boundary-Value Problem
- (f) If necessary, transform a single nth-order equation into a system of n first-order equations.
 - (g) Name and describe the standard numerical algorithm needed to solve this problem
 - (h) Predict the difficulty/ease of obtaining a solution with the method from (g)