Review Handout for Discrete PDFs

A.1. Discrete uniform	\mathbf{k} = number of elements in sample space
$f(x;k) = \frac{1}{k}$	\mathbf{x} = outcome is one distinct element
A.2. Binomial $b(x;n,p) = {n \choose x} p^{x} q^{n-x}$	n = # of (independent, repeated, with replacement, only 2 outcomes) Bernoulli trials p = probability of success on one trial q = 1 - p = probability of failure on one trial
Cumulative binomial in Table A.1 of WMM.	x = # of successes
A.3. Multinomial m({x};n,{p},k) = $\binom{n}{x_1, x_2x_k} \prod_{i=1}^k p_i^{x_i}$	k = # of different types of outcomes n = # of (independent, repeated, with replacement) Bernoulli trials $p_i =$ probability of type i success on one trial
	$\mathbf{x}_{i} = \#$ of successes of type 1
A.4. Hypergeometric $h(x;N,n,k) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}} \text{ for } x = 0,1,2n$	N = # of elements in population n = # of elements in sample, drawn without replacement k = # of outcomes labeled success in population x = # of successes in sample
A.5. Multivariate Hypergeometric	k = # of different types of outcomes
$h_{m}(\{x\}; N, n, \{a\}; k) = \frac{\begin{pmatrix} a_{1} \\ x_{1} \end{pmatrix} \begin{pmatrix} a_{2} \\ x_{2} \end{pmatrix} \begin{pmatrix} a_{3} \\ x_{3} \end{pmatrix} \cdot \begin{pmatrix} a_{k} \\ x_{k} \end{pmatrix}}{\begin{pmatrix} N \\ n \end{pmatrix}}$	N = # of elements in population n = # of elements in sample, drawn without replacement $a_i = \#$ of outcomes labeled success of type i in population $x_i = \#$ of successes of type i in sample
A.6. Negative Binomial	X = # of (independent, repeated, with
$b^{*}(x;k,p) = {\binom{x-1}{k-1}} p^{k} q^{x-k}$ for x = k k + 1 k + 2	replacement, only 2 outcomes) Bernoulli trials p = probability of success on one trial q = 1 - p = probability of failure on one trial
	$\mathbf{k} = \#$ of successes
A.7. Geometric $g(x;p) = pq^{x-1}$ for $x = 1,2,3$	x = # of (independent, repeated, with replacement, only 2 outcomes) Bernoulli trials p = probability of success on one trial
	q = 1 - p = probability of failure on one trial
A.8. Poisson $p(x;\lambda t) = \frac{e^{-\lambda t} (\lambda t)^{x}}{x!} \text{ for } x = 0,1,2$	t = the size of the interval $\lambda =$ the rate of the occurrence of the outcome x = the number of outcomes occurring in interval t. Cumulative Poisson PDF in WMM Table A.2.

Keview Handout for Continuous I DTS	
B.1. Continuous uniform	A = lower limit of random variable
[1	B = upper limit of random variable
$f(x A B) = \begin{cases} \frac{1}{B} & \text{for } A \leq x \leq B \end{cases}$	x = outcome of uniform selection
0 otherwise	
B.2. INORMAI	$\mu = population mean$
$1 - \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)$	σ = population standard deviation
$f(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\sigma}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\tau)}$	$\mathbf{x} =$ random variable of normal PDF
Cumulative standard normal PDF given in	
Table A 2 of WMM need $z = X - \mu$	
Table A.5 of wivity, need $z = \frac{\sigma}{\sigma}$	
B.3. Gamma	$\alpha = \#$ of events
	β = mean time to failure, or mean time between
$f_{\Gamma}(\mathbf{x};\alpha,\beta) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \mathbf{x}^{\alpha} e^{-\lambda\beta} & \text{for } \mathbf{x} > 0 \end{cases}$	events (must have same units as x)
0 elsewhere	$\mathbf{x} = $ time of interest
	Incomplete Gamma Function given in Table
	A.24 of WMM, need $y = \frac{1}{\beta}$
B.4. Exponential (gamma with $\alpha = 1$)	β = mean time to failure, or mean time between
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	events (must have same units as x)
$f_e(\mathbf{x};\beta) = \begin{cases} -\frac{1}{\beta}e^{-\beta} & \text{iof } \mathbf{x} > 0 \end{cases}$	$\mathbf{x} = $ time of interest
0 elsewhere	
B.5. Chi-squared	v = n-1 = degrees of freedom
$f_{a}(\mathbf{x};\mathbf{v})$	$\mathbf{x} = random variable$
$\chi^2(x, y)$	$\alpha = 1 - F_{\alpha}(x; y) = P(X > x)$
Critical values of the Chi-squared distribution	$\chi^2(x,y) = (x + x)$
are given in Table A.5 of WMM.	
	V = 1 degrees of freedom
D.U. t -distribution f(x,y)	v = n-1 = uegrees of needonn, v = random variable
	$\alpha - 1 - \mathbf{E}(\mathbf{x}, \mathbf{y}) - \mathbf{E}(\mathbf{x} \times \mathbf{y})$
Critical values of the t-distribution are given in	$\omega - 1 - 1_{t} (\Lambda, V) - 1 (\Lambda > \Lambda)$
Lable A.4 of WMM.	
B.7. F-distribution	V = n - 1 = degrees of freedom of variable 1
$f_{-}(V, V_{o})$	$v_1 = n_1 + degrees of freedom of variable 1$
(ritical values of the E distribution are given in	$v_2 - n_2 - n_2 = 1 - $ degrees of freedom of variable 2
Table A 6 of WMM	$\alpha = 1 - F_{F}(X; V) = P(X > X)$

Review Handout for Continuous PDFs