
D. Keffer - ChE 240:  Heat Transfer and Fluid Flow

Homework Assignment Number Seven
Assigned:  Wednesday, February 24, 1999

Due: Wednesday, March 3, 1999  BEFORE LECTURE STARTS.

Problem 1.   Geankoplis, problem 3.3-1, page 207

Calculate brake hp of the pump.  water, 3
m

ft
lb

4.62=ρ , 
min
gal60q =

sec
lb341.8

gal481.7
ft

sec60
min

min
gal60

ft
lb4.62qm m

3

3
m ==ρ=&

At 60 gal/min, 58.0=η  and ft31head =  from Figure 3.3-2 page 136 Geankoplis.

The shaft work is 
m

f

c
s lb

ftlb31
g
gHW ⋅==− (3.3-4)

brake horse power is hp81.0
550

mW
  hp brake s =

η
−=

&
(3.3-2)

The plot on page 136 gives a brake horsepower of about 0.8 hp so it checks.

(b)  repeat for 3
m

3 ft
lb

1.53
cm

g85.0 ==ρ

sec
lb10.7

gal481.7
ft

sec60
min

min
gal60

ft
lb1.53qm m

3

3
m ==ρ=&

brake horse power is hp69.0
550

mW
  hp brake s =

η
−=

&

The plot on page 136 gives a brake horsepower of about 0.8 hp so it doesn’t check well, which makes
sense since the plot was made for water.

Problem 2.   Geankoplis, problem 3.3-3, page 207
Adiabatic compression of air

K6.302C4.29T1 == , 
s

m0472.0
min
m83.2q

33
==

Pa102700
m
kN7.102p 21 == , Pa311600p2 = , 75.0=η

mol
kg029.0

mol
gram29MW == , 4.1=γ , 3m

kg17.1
RT
MWP =⋅=ρ
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s
kg0551.0

s
m0472.0

m
kg17.1qm

3

3 ==ρ=&

Find the power

kg
J1134001

p
p

MW
RT

1
Ŵ

1

1

21
s =
















−





−γ
γ=−

γ
−γ

(3.3-14)

kW25.6
s
J5352mŴW ss −=−== &&

kW33.8
Ŵ

W s
p =

η
−=&

Use adiabatic ideal gas law to calculate outlet temperature:

γ
−γ





=

1

1

2

1

2

p
p

T
T

 so K5.415T2 =

Problem 3.   Geankoplis, problem 3.4-5, page 208

Design an agitation system: 3m
kg950=ρ , 

sm
kg005.0
⋅

=µ , 3m5.1V =

standard six blade open turbine with blades at 45 degree angles (curve 3, page 3.4-4)

8
W
Da = , 35.0

D
D

t

a = , 3m
kW5.0

V
P =

Find power

kW75.0m5.1
m
kW5.0V

V
PP 3

3 ===

Find dimensions

Assume cylindrical tank

2
tD

4
HV π=
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from table 3.4-1, page 144, Geankoplis: 1
D
H

t
=

3
tD

4
V π=   so m24.1HDt == tank diameter and tank height

35.0
D
D

t

a =  so 43.0Da = impeller diameter

8
W
Da =  so , 05.0W = impeller width in axial direction

33.0
D
C

t
=  so 41.0C = space between bottom of impeller and bottom of tank

67.0
D
D

a

d =  so 29.0Dd = another diameter of impeller

25.0
D
L

a
=  so 11.0L = length of turbine blade in radial direction

12
1

D
J

t
=  so 10.0J = width of baffle in radial direction

Find frequency:

Guess frequency: 
sec
rev3N =

105000
ND

N
2
a

Re =
µ

ρ=  and 0.2
ND
PN 35

a
P =

ρ
=

Check Figure 3.4-4 for consistency.  When 105000NRe = , 5.1NP =

Get new P, 3.3
5.1
7.53

N
7.53

N
1

D
PN 33

P
3

P
5
a

===
ρ

=

115500
ND

N
2
a

Re =
µ

ρ=

Check Figure 3.4-4 for consistency.  When 105000NRe = , 5.1NP =

So 
sec
rev3.3N =

Problem 4.   Geankoplis, problem 3.5-2, page 208
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Pressure drop of pseudo-plastic fluid

ater, 3
m

ft
lb

2.63=ρ , ft100L = , ft17225.0in067.2D == ,

 
s
ft500.0v =  , 2

n
f

ft
slb280.0K ⋅= , 50.0n =

Generalized Reynolds number:

60.2
8280.02.32

2.635.017225.0

8
'n4
1n3Kg

vD
N 5.0

5.15.0

1'n
'n

c

'n2'n

Re =
⋅⋅

=





 +′

ρ
= −

−

−

so flow is laminar

15.6
N
16f
Re

==

2
f

2

ft
lb3500

gc2
v

D
Lf4p =ρ=∆ (3.5-13) also (2.10-5)

Problem 5.   Geankoplis, problem 3.6-1, page 209

constant density, flows in z direction through circular pipe with azial symmetry.
(a) use shell balance to derive continuity equation.

volume of our system:

[ ] rr2)r()rr(A 22
z ∆π=π−∆+π=

[ ] z)rr(2A rr ∆∆+π=∆+

[ ] z)r(2Ar ∆π=

[ ] z)r()rr(V 22 ∆π−∆+π=

[ ] [ ] rzr2rrr2zrrrr2rzV 2222 ∆∆π=∆+∆∆π=−∆+∆+∆π=

accumulation = in - out + gen - con
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0congen ==

t
rzr2

t
Vacc

∂
ρ∂∆∆π=

∂
ρ∂=

[ ] zzrr

zzzrrrzr

|vrr2|vz)r(2

|vA|vAininin

ρ∆π+ρ∆π=

ρ+ρ=+=

[ ] zzzrrr |vrr2|vz)rr(2out ∆+∆+ ρ∆π+ρ∆∆+π=

Put these five terms in mass balance:

[ ]
[ ] zzzrrr

zzrr

|vrr2|vz)rr(2

|vrr2|vz)r(2
t

rzr2

∆+∆+ ρ∆π−ρ∆∆+π−

ρ∆π+ρ∆π=
∂
ρ∂∆∆π

Divide by rz2 ∆∆π :

[ ]
z
|vr

r
|v)rr(

z
|vr

r
|vr

t
r

zzzrrr

zzrr

∆
ρ−

∆
ρ∆+−

∆
ρ+

∆
ρ=

∂
ρ∂

∆+∆+

Rearrange into a form recognizable as the definition of a derivative:

[ ]
z

|vr|vr
r

|vr|v)rr(
t

r zzzzzrrrrr

∆
ρρ−+

∆
ρ−ρ∆+=

∂
ρ∂− ∆+∆+

Take limits as differential elements approach 0 and apply the definition of the derivative:

( ) ( )
z
vr

r
vr

t
r zr

∂
ρ∂+

∂
ρ∂=

∂
ρ∂−

Consider that, density is constant and r is not a function of z, so

( )
z

v
r

r
rv

0 zr

∂
∂ρ+

∂
∂ρ=
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( )
z

v
r

rv
r
10 zr

∂
∂+

∂
∂=

This is the equation of continuity for flow in a cylindrical pipe with axial symmetry for an
incompressible fluid.  You see that we have only 2 of the four terms in the most general form of
the continuity equation in cylindrical coordinates as given in equation 3.6-27 on page 169,
Geankoplis.  We lost one term due to incompressibility and the other due to axial symmetry.

(b)  Use the equation of continuity in cylindrical coordinates (3.6-27) to derive the equation.

( ) ( ) ( )
z
vv

r
1

r
rv

r
1v

t
zr

∂
ρ∂+

θ∂
ρ∂+

∂
ρ∂=ρ⋅∇=

∂
ρ∂− θ

LHS = 0 because of incompressibility.
middle term of RHS = 0 because of axial symmetry.

( ) ( )
z
v

r
rv

r
10 zr

∂
ρ∂+

∂
ρ∂=

pull density out of derivative because of incompressibility.

( ) ( )
z
v

r
rv

r
10 zr

∂
∂+

∂
∂=

Voila!


