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Homework Assignment Number Five
Assigned:  Wednesday, February 10, 1999

Due: Wednesday, February 17, 1999  BEFORE LECTURE STARTS.

Problem 1.   Geankoplis, problem 2.11-3, page 113

Air K288T = , Pa275000p = , isothermal compressible flow
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from table on page 88 of Geankoplis 004.0f =
From Equation (2.11-9) Geankoplis, page 102
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Guess 200000p2 = .  Substitute in ln term on RHS.  Solve for 2p  on LHS.  Repeat, until guess is
the same as result.  Using, Excel to iteratively solve:
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iteration pold pnew
1 200000 216900.1
2 216900.1 217744.2
3 217744.2 217784.5
4 217784.5 217786.5
5 217786.5 217786.6
6 217786.6 217786.6

So, Pa217786p2 = (2 pts)
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Problem 2.   Geankoplis, problem 3.1-4, page 205

water K293T = , atm1p = , m0.1D = , m10L = , 
s
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Problem 3.   Geankoplis, problem 3.1-5, page 205
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Packed bed of cubes:  m02.0L = , 3m
kg990=ρ , 3p

m
kg1500=ρ

The density of the bed is equal to the densities of void and solid weighted by their respective volume
factions.  The density of the void is zero.
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The definition of the specific surface is the surface area over volume, which for a cube is;
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Now, Geankoplis gives us sφ  for a cube on the  on page 122.  If he had not, we can calculate sφ  by
knowing that the sphericity is defined as the ratio of the diameter of a sphere to the length of the side of a cube, for
a sphere and a cube with the same total volume.
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This gives an effective diameter of:
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The sphericity is the ratio of the surface area of the sphere to the surface area of the particle:
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Equating the two expressions for the specific surface , we find for the cube:
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For our cube, 0248.0L6D 3p =
π

= (2pts)

What this means is that a sphere with a diameter of 0248.0Dp =  has the same volume as a cube

with sides of length m02.0L = .

The ratio of surface area to volume is then:
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cylinders: m02.0D = , m03.0H =
The definition of the specific surface is the surface area over volume, which for a cylinder is;
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However Geankoplis does not give the sphericity for an arbitrary cylinder. One can obtain this by
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Thus, the effective particle diameter of the cylinder is
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The sphericity is the ratio of the surface area of the sphere to the surface area of the particle:
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Now express H as a fraction of D,  kDH =
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When H = D, k =1, and 874.0
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 which is what Geankoplis gives.

For our values of the cylinder dimension:
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What this means is that a sphere with a diameter of 026.0Dp =  has the same volume as a cylinder

with diameter m02.0D =  and height m03.0H =
The ratio of surface area to volume is then:
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Problem 4.   Geankoplis, problem 3.2-2, page 206

The fluid is air at 37.8 C = 311 K, D = 0.8 m, R = 0.124 m of water, static pressure is 0.275 m of water
gage.  The coefficient is 0.97

Calculate the density of air and the static pressure of the stack
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We have two equations and two unknowns, the density of air and the static pressure.   Substitute and solve.
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Problem 5.   Geankoplis, problem 3.2-5, page 207

The fluid is water at 20 C = 293 K, D = 0.0525 m, D2 = 0.020 m, R = 0.214 m of Hg.  The coefficient is
0.98
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Problem 6.   Geankoplis, problem 3.2-6, page 207

The fluid is oil at 20 C = 293 K, density = 900 kg/m^3, viscosity = 6cp= 0.006 kg/m/s,
D = 0.1023 m, q=0.0174 m^3/s, R = 0.93x10^5 Pa.  The coefficient is 0.61
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So, from Geankoplis, page 132,
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