
D. Keffer - ChE 240:  Heat Transfer and Fluid Flow

Homework Assignment Number Two Solutions
Assigned:  Wednesday, January 20, 1999

Due: Wednesday, January 27, 1999  BEGINNING OF CLASS.

Problem 1.   Geankoplis, problem 2.3-2, page 105
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eqn. (2.3-11), page 42.

No accumulation, no generation.

0
z

0 2

2
+

∂
Γ∂=

Now, the equation is no longer a PDE but an ODE.
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Integrate out second derivative.
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The integral of zero yields some constant to be determined from the boundary conditions.
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Integrate out first derivative.
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so, by rearranging:
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and substituting this result back into the equation for gamma:
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This equation describes a straight line between the boundary points.

Problem 2.   Geankoplis, problem 2.4-2, page 105

Using figure 2.4-1.  v=0.4m/s.   Fluid is water.  T= 24 C.

(a)  Using equation (2.4-5), we have 
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Problem 3.   Geankoplis, problem 2.5-1, page 105
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Problem 4.   Geankoplis, problem 2.6-1, page 106
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max,z  at x = 0, by inspection, or:

Take the derivative with respect to x and set it equal to zero.  Solving this for the velocity, will give the extrema of
the velocity.
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which for free flow down a vertical plate of width, W, becomes
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There is no y-dependence on the velocity (across the width of the plate) so that integrates out as a W and cancels
with the W in the denominator.
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Problem 5.   Geankoplis, problem 2.6-2, page 106
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