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Examination Number Two
Administered:  Friday, March 5, 1999

Problem 1.  Friction and mechanical energy balance

Consider the following flow system:

1, L1, D1, z1, p1

2, L2, D2, z2= z1 p2

where the fluid is water.  Use a density, 3m
kg0.1000=ρ  and a viscosity, cp0.1=µ .  Assume steady

state.  The diameters of the lines are:  m076.0D1 =  and m051.0D2 = .  The lengths of the lines are:

m0.10L1 =  and m0.30L2 = .The elevations of the lines are: m0.0z1 =  and 12 zz = .  The

volumetric flow rate feeding into the pump is 
s

m002.0q
3

1 = .

(a)  List and calculate all frictional terms in the mechanical energy balance.  Calculate the total frictional loss.
State all answers in [J/kg].

For your convenience, use the pre-calculated values:

s
m44.0

A
qv

1
1 ==

s
m98.0
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qv
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2 ==

33400
vD

N 11
1Re, =

µ
ρ= 50000

vD
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2Re, =
µ

ρ=
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=ε
 0009.0

D2
=ε

Solution:

Friction terms:
(1)  skin friction in 10 m of 0.076 m pipe
from table on page 88, 006.0f =

kg
J31.0

2
v

D
fL4F

2

f == (2 pts)

(2)  contraction from 0.076 to 0.051 m pipe
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18.0
A
A155.0K

1

2
c =



 −= , 

kg
J15.0

2
v

Kh
2

cc,f == (2 pts)

(3)  skin friction in 30 m of 0.051 m pipe

from table on page 88, 007.0f =

kg
J91.7

2
v

D
fL4F

2

f == (2 pts)

(4)  4 ninety degree elbows

kg
J44.1

2
v

)75.0(4
2
v

K4h4
22

LL,f === (2 pts)

kg
J81.9F =∑ (2 pts)

(b)  Calculate the pressure drop in the system.  State your answer in [Pa].

∑++∆+
α

∆+
ρ
∆= F̂Ŵzg

2
vp0 s

2
& (2 pts)

kg
J81.900

)1(2
44.098.0

1000
p0

22
+++−+∆=

Pa 10193p −=∆ (2 pts)

Problem 2.  Flow Measurement

Consider the following flow system, designed to measure flow with either an orifice or a venturi meter,
depending on whether the valves at the top or bottom are open.  The pressure loss across either meter can be
divided into two terms:  a permanent pressure loss and a recoverable pressure loss, where some of the mechanical
energy lost to the formation of vortices is reclaimed when the vortices dissipate downstream of the meters.  The
fraction of measured pressure loss that is permanent is approximately 10% for the venturi meter and 73% for the
orifice.  Find the orifice diameter that will give the same permanent pressure loss as the venturi throat diameter.
Express your answer as ( )1vovo D,C,C,DfD = .
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orifice

venturi

orifice

1 o 2

p1 p2

venturi

1 2

p1
p2

D2 =Dv

(Hint:  remember Avm ρ=&  so 2D
m4

A
mv

ρπ
=

ρ
=

&&
)

Solution:

We know the formulae for venturi and orifice meters:

( ) 2
2

12
4

12

v
2

D
m4)pp(2

D/D1

Cv
ρπ

=
ρ
−

−
=

&
(2 pts)

( ) 2
o

21
4

1o

o
o

D
m4)pp(2

D/D1

C
v

ρπ
=

ρ
−

−
=

&
(2 pts)

We also know that the problem asks us to equate permanent pressure losses of the two meters.

venturi12orifice12 )pp(10.0)pp(73.0 −=− (2 pts)

Rearrange the top two equations for pressure drop.

( )
2

v
2
2

4
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D/D1m4

2
)pp(



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




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&
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2

o
2
o

4
1o

orifice12 CD
D/D1m4

2
)pp(













ρπ
−ρ=−

&



D. Keffer - ChE 240:  Heat Transfer and Fluid Flow

4

Substitute into the equation that equates permanent pressure losses:

( ) ( )
2
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Rearrange for ( )1vovo D,C,C,DfD =  where 2v DD =

( )

4/1

4
1

4
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(2 pts)

oD  is larger than  vD . (2 pts)

Problem 3.  Navier-Stokes Equation

An incompressible, Newtonian fluid flows down the side of a vertically upright steel plate.  Let x designate the
vertical dimension, y is a lateral dimension perpendicular to the face of the plate, and z is a lateral dimension
parallel to the face of the plate.  Consider one-dimensional flow down the plate where the fluid film has a thickness
in the y-direction of oy .

Solution:

(a)  The Navier-Stokes equation can be written for the x, y, and z component of momentum.  Which one
component is of interest in this one-dimensional-flow problem?  Why?

The x-component is of interest because the velocity in the x-direction is the only component that is non-zero.
There is no flow in the y or z dimension.

(2 pts for right answer, 2 pts for explanation)

(b)  For the component you selected in part (a) write out the full Navier-Stokes equation (don’t use substantial
derivatives).
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This is equation 3.7-36 on page 174 of Geankoplis.  We select this equation because
(1)  We are in a system where using rectangular coordinates makes sense.
(2)  Only our x-component of velocity is non-zero.
(3)  We have an incompressible Newtonian fluid.

(2 pts for right answer)

(c)  For the equation you wrote in part (b), cross-out all negligible terms.  Explain your reasoning in deleting
terms.  Is the resulting equation an ordinary differential equation or a partial differential equation?

x2
x
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∂
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∂
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∂
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∂
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Right hand side:   First term drops out.  Steady-state assumption.
Second term drops out.  x-component of velocity does not vary in the x direction.
Third term drops out.  y-component of velocity is zero.
Fourth term drops out.  z-component of velocity is zero.

Left hand side:  First term drops out. x-component of velocity does not vary in the x direction.
Second term does not drop out.
Third term drops out.  x-component of velocity does not vary in the z direction
Fourth term drops out.  No pressure gradient in a free-falling fluid.
Fifth term remains.  Gravity is present.

x2
x

2
g

y
v0 ρ+

∂
∂µ= (10 points total)

(d)  Our boundary condition at the free interface is: ( ) 0yy
dy

dv
o

x == .

Derive the shear rate profile,  (
dy

dvx  as a function of y .)

x2
x

2
g

y
v ρ−=

∂
∂µ

x
x g

dy
dv

dy
d ρ−=



µ
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µ
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
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
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∫∫ µ
ρ−=


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o
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µ
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x
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µ
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( )yy
g
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o
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µ
ρ= (2 pts)

This is the shear rate as a function of y-position.  It is a linear function of y. It is zero at the free interface,
when y = yo.  It is maximized at the wall, where y = 0.

(e:  extra-credit)  Our boundary condition at the wall is: ( ) 00yvx ==
Derive the velocity profile, ( xv  as a function of y .)
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
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o
x

x (2 pts)

The velocity profile is parabolic.  The velocity is zero at the wall, where y = 0.  The velocity has a
maximum at the free interface, where y = yo.


