D. Keffer - ChE 240: Heat Transfer and Fluid Flow

Numerical Methods for a solution to the Heat Equation: Finite Differences

Congder the 1-D heat equation.
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Our planisto divide our 1-D spaceinto m spatial increments, each of width — . If weare
m

interested in observing the heat transfer from time t to t; , then we can divide that timeinto n

te -t
equal temporal increments, each of width 0 SeeF gure One.
n

At the first step, you know all of the temperatures at time=t, , because these are given by the

initial condition. Let’'sfirst consder the case where we have 2 Dirichlet boundary conditions. In
that case, we also know the temperatures at the beginning and end of the rod for all time. Then
what we next want is the temperatures for all interior nodes (all nodes but the 2 nodes with

temperatures defined by the boundary conditions at the first time increment, t;. If we can get
T(tl,{x}) from T(to,{x}) and T(t,X,) and T(t,X,,,), then we have a formulation which will
alow usto incrementally solve the P.D.E through time. Where we could then obtain T(t, ,{X})
from T(tl,{x}) and T(t,X,) and T(t,X,,). Ingeneral wewant to obtain T(tj+1,{x}) from
T(t;,{x}) and T(t,%,) and T(tX,).

We will derive one such method, a method known as the Crank-Nicolson method.
A comment on notation: we will write T(t;, X;) asTij so that

| superscripts designate temporal increments
I subscripts designate spatial increments

5-1



D. Keffer - ChE 240: Heat Transfer and Fluid Flow

spatial dimension

o)

5 8 5 £
ot T +

o x

T > i
> X >

t

0 [~ Y
t, =t,+Dt |: :|
t, =t +2D¢ [] []
5 H al
2 H al
£ H al
= teten [ H]
g R al
5 [H —H]
H SHL
H {1~ T
H H]
tn :t0+nDt D D
legend

(O node where temperature is known due to initial condition
[ ] node where temperature is known due to boundary condition

node where temperature is unknown but will be solved for

Figure One. Schematic of the spatial and temporal discretization. Casel. Two Dirichlet
Boundary Conditions.
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(O node where temperature is known due to initial condition
[ ] imaginary node needed for Neumann boundary condition
A

node where temperature is unknown but will be solved for

Figure Two. Schematic of the spatial and temporal discretization. Casell. Two Neumann
Boundary Conditions.
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Derivation of the Crank-Nicolson Equations

For any given point i in space, we can make a finite approximation of the partial derivative with
respect to time.

%]TO T—J+1 _ -I-_J _ Tij+1 _ -I—ij

Similarly, for any given point j in time, we can make a finite approximation of the partial
derivative with respect to space.

AT Thy- T _Tha- T
eXg X4~ X Dx

Moreover, we can use that same formula, again to obtain the second derivative with respect to
Space.

. aéTFo aéTTo aéTTo aéTFo
2’1 ¢ LY X g _ eﬂX g 6T g
éﬂx ] Xir1 = X Dx

We can substitute our formula for the first spatial derivative into that for the second spatial
derivative.

T @ T
.. - = i i
q°T g > g Dx 5 & Dx @_ Tl - 2T +T),

This gives the second spatial derivative at timej. But our goal isto find the temperature profile at
timej+1. In order to estimate the temperature at time j+1 from the temperature at time j, we
ought to use a second derivative that is an average over the second spatial derivatives at both
times.

o
e ey ey e

5-4



D. Keffer - ChE 240: Heat Transfer and Fluid Flow

o Lo
T » = leT|J+1 - 2T+ T T|J++1 2T + T

N

So now we have an estimate for the second spatial derivative as a function of the temperatures at
timej and j+1.

Lastly, we need an approximation for the temperature itself. The temperature at point i used for

the calculation of the temperature at the same point but ahead one step in time is the average of
the temperatures at both times.

T » 1 [T.j + T.j+1]
2 | |

We can substitute into our 1-D heat equation, the approximations for the time partial, space
partial, and temperature to obtain:

i+1 i i i j+1 '+1 1
TiJ ) TiJ = agqu'Ll - ZTiJ +Tij' T'J+1 ZTiJ T'J+1 l'19+F A l[TJ TJ+1]
2 2
Dt €2  Dx Dx Og
Multiply through by 2Dt:
21/ o) = 22 (TJ 2T +T) + T 2T 4TI 4 2Dt - ADt[TJ T“l]
i T el i+1 i+1 i i-1

Now define | = aﬂ
Dx 2

Rearrange, grouping like terms
I T @+ 20 +ADYT - TE =1 T +(2- 21 - ADYT +1 T, +2DtF

We could write this equation for every interior node. (We don’t need to writeit for exterior
nodes because we already know the temperatures there from the Dirichlet boundary conditions.)

We should take careful notice of thisequation. (1) All our unknown temperatures (the
temperatures at time j+1 are on the left hand side of the equation). (2) Moreover, they appear in
alinear fashion onthe LHS. (3) All the variables on the RHS are known quantities. Clearly this
isgoing to give us a system of linear, algebraic equations. How do we solve that? Using linear
algebra. In fact, we can write the above equation as.
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U™ =R

Thisisa system of equations of the sandard form:
Ax=b

with a solution
T =J'R

s0 long as the determinant of the J matrix is non-zero.

Size of the matrix:

If there are m spatial intervals, there are m+1 spatial nodes. For 2 Dirichlet boundary
conditions, if there are m spatial nodes, then there are m=m-1 interior nodes, thus there are m-1
unknown temperatures. The J matrix isamatrix of dimenson m-1 by m-1.

For 2 Neumann boundary conditions, there are m=m+3 spatial nodes. (Thisis because for
Neumann boundary conditions, we create imaginary nodes at each end, in order to satisfy the
boundary condition fluxes. See Figure Two.) The temperature at all of these nodes are unknown.
Thus there are m+3 unknown temperatures. The J matrix isamatrix of dimenson m+3 by m+3.

For 1 Dirichlet, and 1 Neumann BC, there are m=m+2 spatial nodes. The temperature at
all but one of these nodes are unknown. Thus there are m+1 unknown temperatures. The J

matrix isamatrix of dimenson m+1 by m+1.

Theright hands side of the above equation istheresidual. The left hand sdeisa
tridiagonal matrix.

Below we consider the explicit forms of the Jacobian and residual.

|. For Dirichlet Boundary Conditions (with m interior nodes, and 2 exterior nodes)
A. Calculate Jacobian

1. First exterior node, node 1
Not included in the Jacobian because thisis not an unknown.
The temperature hereis given by the boundary condition.

2. Last exterior node, node m+1
Not included in the Jacobian because thisis not an unknown.
The temperature here is given by the boundary condition.

3. Firg interior node, node 2 but unknown 1

J11) =(2+2l +ADt)

J12)=-1
4. Lad interior node, node m but unknown m-1
Jim- 2)=-1

JLm-1)=(2+2l +AD)
5. All other nodesi
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JLi- ) =-1
J(,i)=(2+2l +ADt)
JLi+1) =-1

Let Jgiag = (2+21 +ADt)
30 that the Jacobian looks like:

&gog -/ O 0O 0 0 u
&1 Jigg -1 0O 0 0 4
P
= ‘g 0 0 -1 Jgo - O ld
2 0 0 0 = I ‘Jdlag = I ll:j
g0 0 0 0 -1 Jyagg

Thisisamatrix of known quantities. It isa constant matrix unless A isafunction of time.

B. Calculate Resdual

1. First exterior node, node 1
Not included in the Jacobian because this is not an unknown.
The temperature hereis given by the boundary condition.

2. Last exterior node, node m+1
Not included in the Jacobian because this is not an unknown.
The temperature hereis given by the boundary condition.

3. Firg interior node, node i=2 but unknown 1

R) =1 T)+(2- 2| - ADY)T. +1 T} +2DtF +1 T/
4. Last interior node, node i=m but unknown m-1

RM-1)=1T. +(2-2 - ADYTL +1 T +2DtF +1 TI*L
5. All other nodes

R@)=1T!,+(2- 21 - AD)T! +I T}, +2DtF

Let Ryag =(2- 21 - ADY)
so that the Residual looks like:
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| | | "
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Thisisavector of known quantities.
I1. For Pure Neumann Boundary Conditions (with m intervals, m+3 nodes, m+3 unknowns)

A pure Neumann Boundary condition is a boundary condition of the form:

‘;—T(x =0,t)=g(t)* o(T)
X

where the boundary condition can be a function of time but is not a function of temperature.

The approximation we make for thisfirst spatial derivative isthat

&dT l:lj+1 T-j+1 _ -I-_J;+1
-~ = O,t ’ = t.+ —_itl  i-1
de (X )H g( J 1) 2Dx

This equation can be rearranged to fit into the Jacobian as.
j+1 j+1 _
Th - T = 2Dxg(tj:)

A. Calculate Jacobian
1. Firgt exterior node (an imaginary node)

J11)=1.0
J13)=-1.0

2. Ladt exterior node (an imaginary node)
Jim+3)=1.0
Jim+1)=-1.0

3. All other nodesi
Ji- 1) =-1
J(,)=(2+2l +ADt)
JLi+1) =-1
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Let Jgiag = (2+21 +ADL)
30 that the Jacobian looks like:

&1 0 1 0 0 0 u
&1 Jgag -1 O 0 0 §
7280 -1 Jgeg -1 O O
80 0 -1 gy -l Oy
€0 0 0 S B R
€0 0 0 -1 0 1§
e u

Thisisamatrix of known quantities. It isa constant matrix unless A isafunction of time.

B. Calculate Resdual
1. Firgt exterior node (the imaginary boundary condition)

R(1) = 2DXgpc1(tj+1)

2. Ladt exterior node (the imaginary boundary condition)
R(mM +3) = 2DXgpc2 (tj41)

3. All other nodes
R@)=1T!,+(2- 21 - AD)T! +I T}, +2DtF

Let Ryag =(2- 21 - ADY)
so that the Residual looks like:

2DXGpc1(tj41)
T!1 +Ryiag T} +1 Ty +2DtF

T+ RdiagTij +1 Tij+1 + 2Dtk
2DXGpco (tj41)

[0

1
@™ D> @ D> D> D~
[co Y e Y e Y en Y e} e Y a]

I1. For Mixed Boundary Conditions (with m intervals, m+3 nodes, m+3 unknowns)

A mixed (generalized Neumann) boundary condition is a boundary condition of the form:

‘;—T(x =0,t)=g(t)- q)T
X

where the boundary condition can be a function of time but is not a function of temperature.
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The approximation we make for thisfirst spatial derivativeisthat

&dT l:lj+1 - T-j+1 _ T_J;+1
~—(X=0,t), =09(ti.1)-q(t., T = i+l i-1
de (X )H g( J 1) q( J 1) i 2Dx

This equation can be rearranged to fit into the Jacobian as.
j+1 j+1 _ j+1
T|J++1 - TiJ.+1 - 2DXg(tj+1)' 2D>(q(tj+1)-riJ+

- T+ 2Dxq(ty) T + TAT = 2Dxg(t0)

A. Calculate Jacobian
1. Firgt exterior node (now an imaginary node)
J11)=-1.0
J(12) = 2Dxq(tj1)
J13)=1.0
2. Ladst exterior node (now an imaginary node)

Jim+1)=-1.0
J(@Am +2) =2Dxq(t )
Jim+3)=1.0

3. All other nodesi
JLi- D)=-1
J(,)=(2+2l +ADt)
JLi+1) =-1

Let Jgiag = (2+21 +ADL)
30 that the Jacobian looks like:

61 2Dxq(t,,) 1 0O 0 O©
il Jdiag - | 0O 0 O
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Thisisamatrix of known quantities. It isa constant matrix unless A isafunction of time.

B. Calculate Residual
Theresidual isthe same asin the pure Neumann boundary condition case.
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