
D. Keffer - ChE 240:  Heat Transfer and Fluid Flow

5-1

Numerical Methods for a solution to the Heat Equation:  Finite Differences

Consider the 1-D heat equation.
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Our plan is to divide our 1-D space into m spatial increments, each of width 
m
L

 .  If we are

interested in observing the heat transfer from time ot  to ft , then we can divide that time into n

equal temporal increments, each of width 
n

tt of −
.  See Figure One.

At the first step, you know all of the temperatures at time= ot , because these are given by the
initial condition.  Let’s first consider the case where we have 2 Dirichlet boundary conditions.  In
that case, we also know the temperatures at the beginning and end of the rod for all time.  Then
what we next want is the temperatures for all interior nodes (all nodes but the 2 nodes with
temperatures defined by the boundary conditions at the first time increment, 1t .  If we can get

{ })x,t(T 1  from { })x,t(T o  and )x,t(T o  and )x,t(T m , then we have a formulation which will

allow us to incrementally solve the P.D.E through time.   Where we could then obtain { })x,t(T 2
from { })x,t(T 1  and )x,t(T o  and )x,t(T m .  In general we want to obtain { })x,t(T 1j+  from

{ })x,t(T j  and )x,t(T o  and )x,t(T m .

We will derive one such method, a method known as the Crank-Nicolson method.

A comment on notation:  we will write )x,t(T ij  as j
iT  so that

j superscripts designate temporal increments
i subscripts designate spatial increments
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Figure One.  Schematic of the spatial and temporal discretization.  Case I.  Two Dirichlet
Boundary Conditions.
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Figure Two.  Schematic of the spatial and temporal discretization.  Case II.  Two Neumann
Boundary Conditions.
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Derivation of the Crank-Nicolson Equations

For any given point i in space, we can make a finite approximation of the partial derivative with
respect to time.
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Similarly, for any given point j in time, we can make a finite approximation of the partial
derivative with respect to space.
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Moreover, we can use that same formula, again to obtain the second derivative with respect to
space.
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We can substitute our formula for the first spatial derivative into that for the second spatial
derivative.
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This gives the second spatial derivative at time j.  But our goal is to find the temperature profile at
time j+1.  In order to estimate the temperature at time j+1 from the temperature at time j, we
ought to use a second derivative that is an average over the second spatial derivatives at both
times:
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So now we have an estimate for the second spatial derivative as a function of the temperatures at
time j and j+1.

Lastly, we need an approximation for the temperature itself.  The temperature at point i used for
the calculation of the temperature at the same point but ahead one step in time is the average of
the temperatures at both times.
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We can substitute into our 1-D heat equation, the approximations for the time partial, space
partial, and temperature to obtain:
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Multiply through by 2∆t:
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Now define  2x
t
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∆α=λ

Rearrange, grouping like terms
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We could write this equation for every interior node.  (We don’t need to write it for exterior
nodes because we already know the temperatures there from the Dirichlet boundary conditions.)

We should take careful notice of this equation.  (1)  All our unknown temperatures (the
temperatures at time j+1 are on the left hand side of the equation).  (2)  Moreover, they appear in
a linear fashion on the LHS.  (3)  All the variables on the RHS are known quantities.  Clearly this
is going to give us a system of linear, algebraic equations.  How do we solve that?  Using linear
algebra.  In fact, we can write the above equation as:
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RTJ 1j =+

This is a system of equations of the standard form:

bxA =

with a solution

RJT 11j −+ =

so long as the determinant of the J matrix is non-zero.

Size of the matrix:
 If there are m spatial intervals, there are m+1 spatial nodes.  For 2 Dirichlet boundary
conditions, if there are m spatial nodes, then there are m=m-1 interior nodes, thus there are m-1
unknown temperatures.  The J  matrix is a matrix of dimension m-1 by m-1.

For 2 Neumann boundary conditions, there are m=m+3 spatial nodes. (This is because for
Neumann boundary conditions, we create imaginary nodes at each end, in order to satisfy the
boundary condition fluxes.  See Figure Two.)  The temperature at all of these nodes are unknown.
Thus there are m+3 unknown temperatures.  The J  matrix is a matrix of dimension m+3 by m+3.

For 1 Dirichlet, and 1 Neumann BC, there are m=m+2 spatial nodes. The temperature at
all but one of these nodes are unknown.  Thus there are m+1 unknown temperatures.  The J
matrix is a matrix of dimension m+1 by m+1.

The right hands side of the above equation is the residual.  The left hand side is a
tridiagonal matrix.

Below we consider the explicit forms of the Jacobian and residual.

I. For Dirichlet Boundary Conditions (with m interior nodes, and 2 exterior nodes)
A. Calculate Jacobian

1.  First exterior node, node 1
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

2.  Last exterior node, node m+1
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

3.  First interior node, node 2 but unknown 1
)tA22()1,1(J ∆+λ+=

λ−=)2,1(J
4.  Last interior node, node m but unknown m-1

λ−=− )2m,1(J
)tA22()1m,1(J ∆+λ+=−

5.  All other nodes i
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λ−=− )1i,1(J
)tA22()i,1(J ∆+λ+=

λ−=+ )1i,1(J

Let )tA22(Jdiag ∆+λ+=
so that the Jacobian looks like:
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This is a matrix of known quantities.  It is a constant matrix unless A  is a function of time.

B.  Calculate Residual
1.  First exterior node, node 1

Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

2.  Last exterior node, node m+1
Not included in the Jacobian because this is not an unknown.
The temperature here is given by the boundary condition.

3.  First interior node, node i=2 but unknown 1
1j

1
j

3
j
2

j
1 TtF2TT)tA22(T)1(R +λ+∆+λ+∆−λ−+λ=

4.  Last interior node, node i=m but unknown m-1
1j
1m

j
1m

j
m

j
1m TtF2TT)tA22(T)1m(R +

++− λ+∆+λ+∆−λ−+λ=−
5.  All other nodes

tF2TT)tA22(T)i(R j
1i

j
i

j
1i ∆+λ+∆−λ−+λ= +−

Let )tA22(Rdiag ∆−λ−=
so that the Residual looks like:
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This is a vector of known quantities.

II. For Pure Neumann Boundary Conditions (with m intervals, m+3 nodes, m+3 unknowns)

A pure Neumann Boundary condition is a boundary condition of the form:

)T(g)t(g)t,0x(
dx
dT ≠==

where the boundary condition can be a function of time but is not a function of temperature.

The approximation we make for this first spatial derivative is that
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This equation can be rearranged to fit into the Jacobian as:
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A. Calculate Jacobian
1.  First exterior node (an imaginary node)

0.1)1,1(J =
0.1)3,1(J −=

2.  Last exterior node (an imaginary node)
0.1)3m,1(J =+
0.1)1m,1(J −=+

3.  All other nodes i
λ−=− )1i,1(J

)tA22()i,1(J ∆+λ+=
λ−=+ )1i,1(J
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Let )tA22(Jdiag ∆+λ+=
so that the Jacobian looks like:
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This is a matrix of known quantities.  It is a constant matrix unless A  is a function of time.

B.  Calculate Residual
1.  First exterior node (the imaginary boundary condition)

)t(xg2)1(R 1j1bc +∆=
2.  Last exterior node (the imaginary boundary condition)

)t(xg2)3m(R 1j2bc +∆=+
3.  All other nodes

tF2TT)tA22(T)i(R j
1i

j
i

j
1i ∆+λ+∆−λ−+λ= +−

Let )tA22(Rdiag ∆−λ−=
so that the Residual looks like:
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II. For Mixed Boundary Conditions  (with m intervals, m+3 nodes, m+3 unknowns)

A mixed (generalized Neumann) boundary condition is a boundary condition of the form:

T)t(q)t(g)t,0x(
dx
dT −==

where the boundary condition can be a function of time but is not a function of temperature.
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The approximation we make for this first spatial derivative is that
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This equation can be rearranged to fit into the Jacobian as:
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A. Calculate Jacobian
1.  First exterior node (now an imaginary node)
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2.  Last exterior node (now an imaginary node)
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This is a matrix of known quantities.  It is a constant matrix unless A  is a function of time.

B.  Calculate Residual
The residual is the same as in the pure Neumann boundary condition case.


