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University of Tennessee

Prof.  David Keffer

Course Lecture Notes

SIXTEEN

SECTION 3.6  DIFFERENTIAL EQUATIONS OF CONTINUITY
SECTION 3.7 DIFFERENTIAL EQUATIONS OF MOTION Geankoplis page 164-174

We have solved systems with material and mechanical energy balances on macroscopic control
volumes.  We have also used shell balances, which use a control volume with a differential
dimension in one direction, to obtain velocity and stress profiles in that direction.  To advance our
study, we now need to consider a control volume with differential elements in all three spatial
dimensions.

A.  Goals:
• Derive general differential equations of continuity (mass balance).
• Derive general differential equation of change (momentum balance).
• Use these generalized equations to solve a particular problem by keeping only terms

relevant to the problem while discarding unnecessary terms.

B.  Types of derivatives:

1.  partial time derivative

t∂
ρ∂

= change in density at a fixed point (x,y,z) with time

We are in a canoe on a river, paddling with just enough effort so that we don’t move at

all.  Then we look down and see 
t∂
ρ∂

 at the same point in the river.  (Fixed position, different

particles (elements) of fluid.)

2.  total time derivative

dt
dz

zdt
dy

ydt
dx

xtdt
d

∂
ρ∂+

∂
ρ∂+

∂
ρ∂+

∂
ρ∂=ρ

=ρ
dt
d

 change in density of the fluid while we move around with some velocity



D. Keffer - ChE 240:  Heat Transfer and Fluid Flow

3-2

T

dt
dz

dt
dy

dt
dxv 



=

We are in a canoe on a river, paddling around, maybe cross-stream, maybe upstream, with

a given velocity, v , a vector.  Then we look down and see 
t∂
ρ∂

 at different points in river and

different particles of the fluid.  (Different position, different particles (elements) of fluid.)

3.  Substantial time derivative  (a subset of total time derivatives)

ρ∇⋅+
∂
ρ∂=

∂
ρ∂+

∂
ρ∂+

∂
ρ∂+

∂
ρ∂=ρ v

t
v

z
v

y
v

xtDt
D

zyx

=ρ
Dt
D

=change in density of the fluid while moving with the fluid velocity

[ ]Tzyx vvvv =

We are in a canoe on a river, allowing ourselves to move with the river (no paddling).

Then we look down and see 
t∂
ρ∂

 at different point in river but for the same particle of the fluid.

(Different position, same particles (elements) of fluid.)

C.  Linear Algebra and Vector Calculus Operations:

1.  Gradient of a scalar

T

zyx 





∂
ρ∂

∂
ρ∂

∂
ρ∂=ρ∇

The gradient of a scalar is a 3x1 vector of the derivative of that scalar in all spatial
dimensions.

2.  divergence of a vector

z
v

y
v

x
vv zyx

∂
∂+

∂
∂

+
∂
∂=⋅∇
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The divergence of a vector is a scalar, representing the dot product of  the gradient
operator and the vector.

3.  divergence of a matrix

























∂
τ∂+

∂
τ∂

+
∂
τ∂

∂
τ∂

+
∂
τ∂

+
∂
τ∂

∂
τ∂+

∂
τ∂

+
∂
τ∂

=τ⋅∇

zyx

zyx

zyx

zzyzxz

zyyyxy

zxyxxx

The divergence of a 3x3 matrix is a 3x1 vector, representing the dot product of  the
gradient operator and the matrix.

4.  Laplacian of a scalar

2

2

2

2

2

2
2

zyx ∂
ρ∂+

∂
ρ∂+

∂
ρ∂=ρ∇

This is a scalar.  The Laplacian is the sequential operation of first the gradient operator and then
the divergence operator.

Check out some rules of vector algebra  and vector calculus in  equations (3.6-4 to equation 3.6-
16), Geankoplis, page 166-167.

D.  Derive the general differential equation of continuity

accumulation = in - out + generation - consumption

Define differential volume element as shown on page167, Geankoplis.
Define the five terms in the mass balance.
There is no generation or consumption of the fluid.

0congen ==

t
zyx

t
Vacc

∂
ρ∂∆∆∆=

∂
ρ∂=
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zzyyxx

zzyxyyzxxxzyzyx

|vyx|vzx|vzy

|vA|vA|vAinininin

ρ∆∆+ρ∆∆+ρ∆∆=
ρ+ρ+ρ=++= −−−

zzzyyyxxx |vyx|vzx|vzyout ∆+∆+∆+ ρ∆∆+ρ∆∆+ρ∆∆=

Put these five terms in mass balance:

( )
( )zzzyyyxxx

zzyyxx

|vyx|vzx|vzy

|vyx|vzx|vzy
t

zyx

∆+∆+∆+ ρ∆∆+ρ∆∆+ρ∆∆−

ρ∆∆+ρ∆∆+ρ∆∆=
∂
ρ∂∆∆∆

Divide by differential volume:







∆
ρ+

∆
ρ

+
∆

ρ−







∆
ρ+

∆
ρ

+
∆

ρ=
∂
ρ∂

∆+∆+∆+
z
|v

y
|v

x
|v

z
|v

y
|v

x
|v

t

zzzyyyxxx

zzyyxx

Rearrange into a form recognizable as the definition of a derivative:

z
|v|v

y
|v|v

x
|v|v

t
zzzzzyyyyyxxxxx

∆
ρ−ρ+

∆
ρ−ρ

+
∆

ρ−ρ=
∂
ρ∂− ∆+∆+∆+

Take limits as differential elements approach 0 and apply the definition of the derivative:

( ) ( ) ( ) v
z
v

y
v

x
v

t
zyx ρ⋅∇=

∂
ρ∂+

∂
ρ∂

+
∂
ρ∂=

∂
ρ∂−

Now consider the law for the derivative

( ) ( ) ( )
x

v
x
v

x
v

x
xx

∂
ρ∂+

∂
∂ρ=

∂
ρ∂

 and the same for y and z







∂
∂+

∂
∂

+
∂
∂ρ=ρ−

z
v

y
v

x
v

Dt
D zyx
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( )v
Dt
D ⋅∇ρ=ρ−

This is the continuity equation.

For the case of an incompressible fluid (constant density) at steady or unsteady state:

0v =⋅∇

This is a mass balance.  It may not look like it but it is.  Just go back through the derivation and
see that this is nothing but an expression of

accumulation = in - out + generation - consumption

when there is no generation or consumption and when the fluid is incompressible.  This equation
does not assume steady state, even though there is no time derivative in the equation.  This is a
first order partial differential equation PDE)

Example 3.6-1. page 168

The continuity equation can also be expressed in spherical and cylindrical coordinates, which are
useful if you have a system which naturally lends itself to that system, as a circular pipe lends itself
to cylindrical coordinates.

In cylindrical coordinates:

v
t

ρ⋅∇=
∂
ρ∂−  is still true but

θ= cosrx , θ= sinry , and zz =  

so the continuity equation becomes:

( ) ( ) ( )
z
vv

r
1

r
rv

r
1v

t
zr

∂
ρ∂+

θ∂
ρ∂+

∂
ρ∂=ρ⋅∇=

∂
ρ∂− θ

In spherical coordinates:

v
t

ρ⋅∇=
∂
ρ∂−  is still true but

φθ= cossinrx , φθ= sinsinry , and θ= cosrz  SO:
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so the continuity equation becomes:

( ) ( ) ( )
φ∂

ρ∂
θ

+
θ∂

θρ∂
θ

+
∂

ρ∂=ρ⋅∇=
∂
ρ∂− φθ v

sinr
1sinv

sinr
1

r
vr

r
1v

t
r

2

2

Section 3.7  Now do the same analysis for a momentum balance

E.  Derive the general differential equation of change (momentum balance)

accumulation = in - out + generation - consumption

Define differential volume element as shown on page 167.

Momentum is a vector.  Since there is no intrinsic difference between x, y, and z coordinates, we
can derive the equation of change for the x-component of momentum and then make analogous
statements about the y and z components.  Look only at x-component of momentum

( ) ( )
t
v

zyx
t
v

Vacc xx

∂
ρ∂∆∆∆=

∂
ρ∂=

Momentum can flow in and out by convection:

zzxyyxxxx

zzxyxyyxzxxxxzyzyx

|vvyx|vvzx|vvzy

|vvA|vvA|vvAinininin

ρ∆∆+ρ∆∆+ρ∆∆=
ρ+ρ+ρ=++= −−−

zzzxyyyxxxxx |vvyx|vvzx|vvzyout ∆+∆+∆+ ρ∆∆+ρ∆∆+ρ∆∆=

Momentum can flow in and out by molecular diffusion:

zzxyyxxxx

zzxyxyyxzxxxxzyzyx

|yx|zx|zy

|A|A|Ainininin

τ∆∆+τ∆∆+τ∆∆
ρτ+τ+τ=++= −−−

zzzxyyyxxxxx |yx|zx|zyout ∆+∆+∆+ τ∆∆+τ∆∆+τ∆∆=

Momentum can be generated in the differential volume by a body force like gravity:

xx gzyxgVgen ρ∆∆∆=ρ=
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Momentum can be generated in the differential volume by a net force acting on the element, due
to the difference in pressures:

( ) zyppgen xxx ∆∆−= ∆+

Put these five terms in mass balance:
( )

( ) zyppgzyx

|yx|zx|zy

|yx|zx|zy

|vvyx|vvzx|vvzy

|vvyx|vvzx|vvzy
t
v

zyx

xxxx

zzzxyyyxxxxx

zzxyyxxxx

zzzxyyyxxxxx

zzxyyxxxx
x

∆∆−+ρ∆∆∆+
τ∆∆+τ∆∆+τ∆∆−

τ∆∆+τ∆∆+τ∆∆+
ρ∆∆+ρ∆∆+ρ∆∆−

ρ∆∆+ρ∆∆+ρ∆∆=
∂
ρ∂∆∆∆

∆+

∆+∆+∆+

∆+∆+∆+

Divide by volume, rearrange, and take limits and apply the definition of the derivative

( ) ( ) ( ) ( )

x
zxyxxx

zxyxxxx

g
x
p

zyx

z
vv

y
vv

x
vv

t
v

ρ−
∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂+









∂
ρ∂+

∂
ρ∂

+
∂

ρ∂=
∂
ρ∂−

Now, consider again the rule for derivatives of a product:

( ) ( ) ( )
x
v

v
x
v

v
x
vv x

x
x

x
xx

∂
ρ∂+

∂
∂ρ=

∂
ρ∂

 

and the same for y and z, i.e.

( ) ( ) ( )
y
vv

y
v

v
y
vv x

y
y

x
yx

∂
ρ∂+

∂
∂

ρ=
∂

ρ∂

( ) ( ) ( )
z
v

v
z
v

v
z
vv x

z
z

x
zx

∂
ρ∂+

∂
∂ρ=

∂
ρ∂

Substituting these rules into our momentum balance, we have:
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( )

( ) ( )

( ) ( )

( ) ( )

x
zxyxxx

x
z

z
x

x
y

y
x

x
x

x
x

x

g
x
p

zyx

z
vv

z
vv

y
vv

y
v

v

x
vv

x
vv

t
v

ρ−
∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂+

























∂
ρ∂+

∂
∂ρ+

∂
ρ∂+

∂
∂

ρ+

∂
ρ∂+

∂
∂ρ

=
∂
ρ∂−

Recall, the substantial derivative of the x-momentum component has the definition:

( ) ( ) ( ) ( ) ( )
z

x
y

x
x

xxx v
z
v

v
y
v

v
x
v

t
v

Dt
vD

∂
ρ∂+

∂
ρ∂+

∂
ρ∂+

∂
ρ∂=ρ

( ) ( ) ( ) ( )

( ) ( ) ( )
x

zxyxxxz
x

y
x

x
x

z
x

y
x

x
xx

g
x
p

zyxz
vv

y
v

v
x
vv

v
z
vv

y
vv

x
v

t
v

ρ−
∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂+








∂
∂ρ+

∂
∂

ρ+
∂

∂ρ

=





∂
ρ∂+

∂
ρ∂+

∂
ρ∂+

∂
ρ∂−

( ) ( ) x
zxyxxx

x
x g

x
p

zyx
vv

Dt
vD ρ−

∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂+⋅∇ρ=ρ−

but using the product rule for differentiation again:

 
( ) ( ) ( )

Dt
Dv

Dt
vD

Dt
vD

x
xx ρ+ρ=ρ

From the mass balance:   ( )v
Dt
D ⋅∇ρ=ρ−

so 
( ) ( ) ( )

Dt
Dv

Dt
vD

Dt
vD

x
xx ρ+ρ=ρ

( ) ( ) ( )vv
Dt
vD

Dt
vD

x
xx ⋅∇ρ−ρ=ρ
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And the momentum balance becomes:

( ) ( ) ( ) x
zxyxxx

xx
x g

x
p

zyx
vvvv

Dt
vD ρ−

∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂=⋅∇ρ−⋅∇ρ+ρ−

( )
x

zxyxxxx g
x
p

zyxDt
vD ρ−

∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂=ρ−

This is the equation of motion in the x-direction.  It is a momentum balance.
The y- and z-components of the momentum are obtained in a precisely analogous manner.
They look like:

( )
y

zyyyxyy g
y
p

zyxDt
vD

ρ−
∂
∂+





∂
τ∂

+
∂
τ∂

+
∂
τ∂

=ρ−

( )
z

zzyzxzz g
z
p

zyxDt
vD ρ−

∂
∂+





∂
τ∂+

∂
τ∂

+
∂
τ∂=ρ−

which in vector notation looks like:

( )
gp

Dt
vD ρ−∇+τ⋅∇=ρ− Geankoplis, 3.7-13

This momentum balance is true for any continuous medium.

B.  Equations for stresses using Newton’s Law of viscosity (page 172-173)

1.  Shear stress components for Newtonian fluids in rectangular coordinates
See Geankoplis page 172, eqns (3.7-14 to 3.7-20)

2.  Shear stress components for Newtonian fluids in cylindrical coordinates
See Geankoplis page 172-173, eqns (3.7-21 to 3.7-27)

3.  Shear stress components for Newtonian fluids in spherical coordinates
See Geankoplis page 173, eqns (3.7-28 to 3.7-34)

For the qualitative explanation of the basis of these equations, you must go to “An Introduction to
Fluid Dynamics” by Stanley Middleman, Wiley, New York, 1998, page 142-143

Examine rectangular case:  obtain 1-D results from 3-D case by looking at equation 3.7-17 when
the y component of the velocity is zero.
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Substitute the definitions of the Newtonian stress into the equation of change.  Obtain the
equation of change for a Newtonian fluid.  Example given for x component in rectangular
coordinate system. (3.7-35)

( ) ( )

x
zx

yxxx

g
x
p

x
v

z
v

z
             

x
v

y
v

y
v

3
2

x
v

2
xDt

vD

ρ+
∂
∂−



 







∂
∂+

∂
∂µ

∂
∂+















∂
∂

+
∂
∂µ

∂
∂+



 ⋅∇µ−

∂
∂µ

∂
∂=ρ

C.  Navier-Stokes equations (Equation of change for incompressible Newtonian fluid) (page 174-
175)

When the density is constant (incompressible) and the viscosity is constant (isothermal
conditions), the equations of (3.7-10 to 3.7-13)  combined with Newton’s law equations
(equations 3.7-14 to 3.7-34) become the Navier-Stokes equations.

1.  Equations of change for incompressible Newtonian fluid in rectangular coordinates

Start with equation (3.7-35), general equation of change for Newtonian fluid and assume constant
density:

( ) ( )

x
zx

yxxx

g
x
p

x
v

z
v

z
             

x
v

y
v

y
v

3
2

x
v

2
xDt

vD

ρ+
∂
∂−



 







∂
∂+

∂
∂µ

∂
∂+















∂
∂

+
∂
∂µ

∂
∂+



 ⋅∇µ−

∂
∂µ

∂
∂=ρ

( ) ( )

x
z

2

2
x

2

y
2

2
x

2

2
x

2
x

g
x
p

xz
v

z
v

             

xy
v

y
v

v
x3

2
x
v

2
Dt
vD

ρ+
∂
∂−


















∂∂

∂+
∂
∂µ+






















∂∂

∂
+

∂
∂µ+








⋅∇

∂
∂µ−

∂
∂µ=ρ

( )

x
z

2

2
x

2
y

2

2
x

2

zyx
2
x

2
x

g
x
p

xz
v

z
v

xy
v

y
v

            

z
v

y
v

x
v

x3
2

x
v2

Dt
vD

ρ+
∂
∂−


















∂∂

∂+
∂
∂µ+






















∂∂

∂
+

∂
∂µ+















∂
∂+

∂
∂

+
∂
∂

∂
∂µ−

∂
∂µ=ρ
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( )

x
z

2

2
x

2
y

2

2
x

2

z
2

y
2

2
x

2

2
x

2
x

g
x
p

xz
v

z
v

xy
v

y
v            

zx
v

yx
v

x
v

3
2

x
v

2
Dt
vD

ρ+
∂
∂−


















∂∂

∂+
∂
∂µ+






















∂∂

∂
+

∂
∂µ+






















∂∂

∂+
∂∂

∂
+

∂
∂µ−

∂
∂µ=ρ

( )












∂∂

∂+
∂∂

∂
+

∂
∂µ+

ρ+
∂
∂−





∂
∂+

∂
∂+

∂
∂µ=ρ

zx
v

yx
v

x
v

3
             

g
x
p

z
v

y
v

x
v

Dt
vD

z
2

y
2

2
x

2

x2
x

2

2
x

2

2
x

2
x

( )









∂
∂+

∂
∂

+
∂
∂

∂
∂µ+

ρ+
∂
∂−





∂
∂+

∂
∂+

∂
∂µ=ρ

z
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From the mass balance, we know that for an incompressible fluid, the divergence of the velocity is
zero.

( )
x2

x
2

2
x

2

2
x

2
x g

x
p

z
v

y
v

x
v

Dt
vD ρ+

∂
∂−





∂
∂+

∂
∂+

∂
∂µ=ρ

This is the equation of change for an incompressible Newtonian fluid in the x-direction, using
rectangular coordinates.  The y and z equations look like:
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and the three equations can be expressed in vector notation as

( )
gpv

Dt
vD 2 ρ+∇−∇µ=ρ

2.  Equations of change for incompressible Newtonian fluids in cylindrical coordinates
See Geankoplis page 174, eqns (3.7-40 to 3.7-42)

3.  Equations of change for incompressible Newtonian fluids in spherical coordinates
See Geankoplis page 174-175, eqns (3.7-43 to 3.7-46)


