D. Keffer - ChE 240: Heat Transfer and Fluid Flow

Department of Chemical Engineering
University of Tennessee
Prof. David K effer
Course Lecture Notes

SIXTEEN

SECTION 3.6 DIFFERENTIAL EQUATIONS OF CONTINUITY
SECTION 3.7 DIFFERENTIAL EQUATIONS OF MOTION Geankoplis page 164-174

We have solved systems with material and mechanical energy balances on macroscopic control
volumes. We have also used shell balances, which use a control volume with a differential
dimension in one direction, to obtain velocity and stress profilesin that direction. To advance our
study, we now need to consider a control volume with differential elementsin all three spatial
dimensions.

A. Goas
- Derive general differential equations of continuity (mass balance).

Derive general differential equation of change (momentum balance).

Use these generalized equations to solve a particular problem by keeping only terms

relevant to the problem while discarding unnecessary terms.

B. Types of derivatives:

1. partial time derivative
1Ir _ _ . . _
ﬁ = change in dengity at a fixed point (X,y,z) with time

We arein a canoe on ariver, paddling with just enough effort so that we don’t move at
r
all. Then welook down and see % at the same point in theriver. (Fixed podtion, different

particles (elements) of fluid.)

2. total time derivative

ar _fr Jrdx frdy  fradz
dt it 9fxdt 9qy dt 9z dt

r
—— = change in dengty of the fluid while we move around with some velocity

dt
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, T
y =6 dy dzg
~ 8dt dt dtH
We arein a canoe on ariver, paddling around, maybe cross-stream, maybe upstream, with
r
agiven veocity, V, avector. Then we look down and see % at different pointsin river and

different particles of the fluid. (Different position, different particles (elements) of fluid.)

3. Subgtantial time derivative (a subset of total time derivatives)

E:ﬂ_r+ﬂ_rv +ﬂ_l’v +ﬂ_rv :ﬂ—r+v><ﬂr
Dt ft x * fy Y 1z % M °

r
a = =change in dengity of the fluid while moving with the fluid velocity

We arein a canoe on ariver, allowing ourselves to move with the river (no paddling).
r
Then we look down and see % at different point in river but for the same particle of the fluid.

(Different pogition, same particles (elements) of fluid.)

C. Linear Algebra and Vector Calculus Operations:

1. Gradient of ascalar

« _€efr qr 9r L‘JT
Nr=ar o U
eix Ty 1Tzy

The gradient of a scalar isa 3x1 vector of the derivative of that scalar in all spatial
dimensions.

2. divergence of a vector

N xv =
™>x Ty 1z
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The divergence of a vector isa scalar, representing the dot product of the gradient
operator and the vector.

3. divergence of a matrix

7

?ﬂtxx + ﬂtyX + ﬂtleiJ

s Ty Tz

Rl _elityy Tty  Mayq
- gﬂx Ty ﬂzg
éﬂtxz +ﬂtyz +ﬂtzzl:1

gEx Ty 9z 4

The divergence of a 3x3 matrix isa 3x1 vector, representing the dot product of the
gradient operator and the matrix.

4. Laplacian of ascalar

2 2 2
Nzr=ﬂ2+ﬂ;+ﬂ2
> Ty 1z

Thisisascalar. The Laplacian isthe sequential operation of first the gradient operator and then
the divergence operator.

Check out some rules of vector algebra and vector calculusin equations (3.6-4 to equation 3.6-
16), Geankoplis, page 166-167.

D. Deivethe general differential equation of continuity

accumulation = in - out + generation - consumption
Define differential volume element as shown on pagel67, Geankoplis.

Define the five termsin the mass balance.
Thereis no generation or consumption of the fluid.

gen=con=0

acc =V11TT—rt = DnyDzﬂ—r

It
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in=in, +iny +in, = Ay _,rvy |y A, rvy |y +A rv, |,
=DyDzrv, |, +DxDzrv, |, +DxDyrv, |,
out = DyDzer |x+Dx +DxDzr Vy |y+Dy +DXDerz |z+Dz

Put these five terms in mass balance;

DnyDz:TT—Z = (DyDzr v Iy +DxDezr v, |, +DxDyr v, |,)

- (DyDZI'VX |x+Dx +DXDZI'Vy |y+Dy +DXDerz |z+Dz)
Divide by differential volume:

ﬂ_l’_&FVX |x +I'Vy |y +er |29

Tt & Dx Dy Dz g

) RV, |x+Dx + Fvy |y+Dy + rv, |z+DzQ

Rearrange into a form recognizable as the definition of a derivative:

ﬂ_l’ — "'V |x+Dx “I'Vy |x +I’Vy |Y+DY “Vy |y +er |z+Dz -I'vy |z
qt Dx Dy Dz

Take limits as differential e ements approach 0 and apply the definition of the derivative:

e _1v,), vy, aGv,)

=Nxv
It ix Ty 1z

Now consder the law for the derivative

v -, 1, 96)
fix fix fix

and the samefor y and z

_Dr _ &y +ﬂVy+ﬂVZQ
ot & Ty Mz 4

3-4



D. Keffer - ChE 240: Heat Transfer and Fluid Flow
2L =1 (Rw)
Dt
Thisisthe continuity equation.
For the case of an incompressible fluid (constant density) at steady or unsteady state:
N> =0

Thisisamass balance. It may not look likeit but itis. Just go back through the derivation and
see that thisis nothing but an expression of

accumulation = in - out + generation - consumption
when there is no generation or consumption and when the fluid isincompressible. This equation
does not assume steady state, even though there is no time derivative in the equation. Thisisa
first order partial differential equation PDE)
Example 3.6-1. page 168
The continuity equation can also be expressed in spherical and cylindrical coordinates, which are
useful if you have a system which naturally lendsitsdlf to that system, asa circular pipe lends itself
to cylindrical coordinates.

In cylindrical coordinates:

r o o
- ﬂ—:N><ry isdtill true but
it
X =rcosq, y=rsing,andz=2z
S0 the continuity equation becomes:

- ﬂ_r :N)q-y :}ﬂ(rrvr)+1'ﬂ(rvq)+ﬂ(rvz)

qt rqr r 99 9z

In spherical coordinates:

e

=N>¢y isgtill true but
qt

x =rsingcosf , y =rsinqgsinf ,and Zz =rcosq SO:
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S0 the continuity equation becomes:

_ﬂ_r:N)q'y:izﬂ(rrzvr).F 1 1T(rVqSihq)_'_ 1 ﬂ(er)

qt r qr rsing o] rsing gf

Section 3.7 Now do the same analysis for a momentum balance

E. Deivethe general differential equation of change (momentum balance)
accumulation = in - out + generation - consumption
Define differential volume element as shown on page 167.
Momentum isavector. Sincethereisno intringc difference between x, y, and z coordinates, we

can derive the equation of change for the x-component of momentum and then make anal ogous
statements about the y and z components. Look only at x-component of momentum

(rv,) (rv,)
qt qt

Momentum can flow in and out by convection:

acc =V

= DxDyDz

in=in, +in, +in, = Ay rv, v, [y FA, vy |y AL TVLY, |,
=DyDzrv,v, [y +DxDzrv,v, |, +DxDyrv,v, |,
out = DyDzerVx |x+Dx +DXDzerVy |y+Dy +DXDersz |z+Dz
Momentum can flow in and out by molecular diffuson:
in=in, +in, +in, = Ayt Ix FAx otyx y FAx o |,

DyDzt XX |x +DxDzt yX |y +DxDyt zx |z

out = DyDZt XX |x+Dx +DxDzt yX |y+Dy +DXDyt zX |z+Dz
Momentum can be generated in the differential volume by a body force like gravity:

gen = Vrg, = DxDyDzrg,
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Momentum can be generated in the differential volume by a net force acting on the element, due
to the difference in pressures:

gen = (p - Py.ox JDYDZ

Put these five terms in mass balance:
rv
DnyDz% =DyDzrv,v, |x +DxDzrv,v, |, +DxDyrv,v, |,
- DyDzr v,V |x+px +DXDzr vy vy |4, +DXDyrv, v, |,.p,
+ DyDZt XX |x +DxDzt yX |y +DXDyt zx |z
- DyDzt XX |x+Dx +DxDzt yX |y+Dy +DxDyt zX |z+Dz

+ DXDyDzr g, + (py - Py JDYDZ

Divide by volume, rearrange, and take limits and apply the definition of the derivative
3w, 8w TEvey) 1(v,y,)
it g Tx Ty 1z

+aa1tXX+ﬂtyx+ﬂtzxg+m
ix Ty Tz g5 WX

O\

'rgx

Now, consider again the rule for derivatives of a product:
Mrvev) =y Tv), 10vy)
————L IV, ——"+V, ——

fx 9Ix fx

and thesamefory and z, i.e.

Mvey)_ o 1), 16y,

—I'VX
Ty v U Ty

rveve)_, ve),, v,
9z 9z 9z

Subsgtituting these rules into our momentum balance, we have:
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& Mlvy), ., rvy) u
érvx X Vx w U
e u
vy &, W), 9v)i
M ¢ 9 Y @ U
€ u
€, rv, ﬂ(Vz) +v, ﬂ(rvx)l,J
g |4 1z H
a[txx_,_ﬂtyx +ﬂtzxg+m_rgx
ix Ty 9zg WX

Recall, the substantial derivative of the x-momentum component has the definition:

Dlrv,) _1(rv) , 9w, 96v,),  16rv,)

X VZ
Dt Tt x v 7 1z
enlrv,), 1lrvy), , Ilv,), L Tlrv,), U
Tt % Wy Y 1z Y
e 1), , Tv), ﬂ( D0 o T 0 T
& I * qy X é Vv Iz ;ﬂ x X
_D(I’VX):rV (NX\_/) a[txx_'_ﬂ yXx ﬂtzx +ﬂp rg,

Dt X ™ Iy 9z5 W
but using the product rule for differentiation again:

D(v,)_, Dlv,),, Of)
Dt Dt X Dt

Dr <
From the mass balance: - bt =r (N X\_/)

3-8



D. Keffer - ChE 240: Heat Transfer and Fluid Flow

And the momentum bal ance becomes;

D(Vx)zﬂtx)(+ﬂtyx+ﬂtzxg+m_rg
Dt & Ty fzg X

- T

Thisisthe equation of motion in the x-direction. It isa momentum balance.
The y- and z-components of the momentum are obtained in a precisaly analogous manner.
They look like:

D(Vy):ﬁtxy*_ﬂtyy_'_ﬂtzyg_'_m_rg
Dt ™ Ty Tzg Ty

rD(VZ)zaEth ﬂty2+“tzzg+m-rgz
Dt ™x Ty fzg5 1z

- T

which in vector notation looks like:

-r %:Nﬁﬂﬁp- rg Geankoplis, 3.7-13

This momentum balance is true for any continuous medium.
B. Equationsfor stresses using Newton's Law of viscosity (page 172-173)

1. Shear stress components for Newtonian fluidsin rectangular coordinates
See Geankoplis page 172, egns (3.7-14 to 3.7-20)

2. Shear stress components for Newtonian fluidsin cylindrical coordinates
See Geankoplis page 172-173, eqns (3.7-21 to 3.7-27)

3. Shear stress components for Newtonian fluids in spherical coordinates
See Geankoplis page 173, eqns (3.7-28 to 3.7-34)

For the qualitative explanation of the basis of these equations, you must go to “An Introduction to
Huid Dynamics’ by Stanley Middleman, Wiley, New Y ork, 1998, page 142-143

Examine rectangular case: obtain 1-D results from 3-D case by looking at equation 3.7-17 when
the y component of the velocity is zero.
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Substitute the definitions of the Newtonian stress into the equation of change. Obtain the
equation of change for a Newtonian fluid. Example given for x component in rectangular
coordinate system.  (3.7-35)

u, 1¢€dv, ﬂVyOU

N xv )+ —— +—Y 5

Dt ﬂxg ”( v)g e sy ™ g
Téeadvy, fv,a m”gx

+
ﬂz@méﬂz ™

C. Navier-Stokes eguations (Equation of change for incompressible Newtonian fluid) (page 174-
175)

When the density is constant (incompressible) and the viscosity is constant (isothermal
conditions), the equations of (3.7-10 to 3.7-13) combined with Newton’s law equations
(equations 3.7-14 to 3.7-34) become the Navier-Stokes equations.

1. Equations of change for incompressible Newtonian fluid in rectangular coordinates

Start with equation (3.7-35), general equation of change for Newtonian fluid and assume constant
dengity:

D(v,)_ 16 vy 2 (o i, 1€amy, v,
r X :_,\m_x__ Nxv,+_ X+_ ,
Dt ﬂx% x sn( ‘)H ﬂygTéﬂy ﬂx%

Téadv, Tv,au Tp

t— + - o+

8% WA x>

5 q2 Y 6 @2 2 &
rD(VX):gzmﬂ—sz-gmi(NN_/)H+AaTVZX+ﬂ Vy &

Dt & * 3 X g g&W WXy

A 2 2 RN

+ 3§TVX+1TVZ%_EH9X

&Mz TzTxgg WX
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rD(vx)zg2 TV, grrg&ﬂzvx +ﬂ2Vy +ﬂ2v298

Dt g f@x* 3 &M MWy Wxzjy

Ve 2 A Ve PR
ragl v T Cay, TPy, 8 T,

Y0+
SSn Mk eE2 Tk

2 2 2
Do) (v TPV TP, e
Dt ™y 12° 5 W
+ r_niﬂzvx + ﬂzVy ﬂZVz u
3gT Xy TxTzg

D(vy) _ &%v, , T2v,  TPv, 8 fp

"Dt VIR P
m eﬂvx 1TVy 1TVZU
+t——a +
3Mxgx Ty 9Tz
, , .
D) - BV, TPy, TPV, O Pt gy + T [Riw]
Dt néﬂxz Ty  Tz2° 5 X 3

From the mass balance, we know that for an incompressible fluid, the divergence of the velocity is
zero.

D(vy) _ &%v, , TPv, , 1%, 0 1p
Dt rTéﬂx ﬂyz 122 5 x

+I0y

Thisisthe equation of change for an incompressible Newtonian fluid in the x-direction, using
rectangular coordinates. They and z equations|ook like:

D(Vy) _ rrgﬂzvy N vy 4 vy 0 9p

}
Dt Sw* Ty 2% T

+rgy
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2 2 2 A
Olv,) _ v, v, 1,0 T,
Dt rTéﬂxz W2 M2 5 Tz

and the three equations can be expressed in vector notation as

)= ey - fp-rg

2. Equations of change for incompressible Newtonian fluidsin cylindrical coordinates
See Geankoplis page 174, egns (3.7-40 to 3.7-42)

3. Equations of change for incompressible Newtonian fluids in spherical coordinates
See Geankoplis page 174-175, egns (3.7-43 to 3.7-46)
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