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E. StateVariables

The two processes (an isothermal expansion/compression and an isobaric heating/cooling) that we have
shown in parts C and D for are only two examples of processes which could take place. However, since asingle-
component, single-phase fluid is completely determined by its temperature and pressure, we can effect any change
in thermodynamic state of a single component, single phase material by combining an isothermal
expansion/compression step with an isobaric heating/cooling step. It doesn’t matter if the real process used a
different path to get from the initial to the final state, because U, H, S, G, and A are state variables. They are path
independent. If we know the initial and final values of T and P, we can calculate any of these properties.

To Demonstrate that these variables are path independent, we can calculate the changein U, H, S, G, and
A for (i) the case where we first undergo an isobaric heating from T, to T; followed by an isothermal expansion
from P, to P, and (ii) the case where we first undergo an isothermal expansion from P, to P; followed by an
isobaric heating from T, to Ts.

Let’s take the enthalpy as an example. In case (i), we have first an isothermal change in pressure

el
géﬂg :T—eﬂT?‘/ +V
efPgr &P 0
eV ear
yielding an enthalpy change of
é &Po u
Pe Syry,
DHic. 7 = H(T1,P5) - H(T4,P;) = ET. +VUdpP
iso- T = H(T1,P2) - H(T1,Py) P?élgdﬂag g
& &NVer g

We now have agasat T; and P,. At aconstant pressure of P,, we now isobarically heat the material.

ZHO

- =C
ST P
T2
DHiso-p =H(T2,P2) - H(T1,P2) = ¢Cp(T,P2)dT
1
The total change in enthalpy is
é &dPo u
Pzé gﬁ;\/ l;| To
DH = DHiso. T + DHigo-p = Ongaéﬂ:’—b+VHdP + Cp(T,Po)dT
P_']_é C -+ G T1
é elVegr

In case (ii), we perform the steps in the opposite order. At a constant pressure of Py, we now isobarically heat the
material. Then oncethegasisat T, and P;, we isothermally change the temperature.
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We see that these two eguations are not the same because the temperature integrals are evaluated at different
pressures and the pressure-integrals are evaluated at different pressures. However, since H is a state function, the
numerical result for DH must be the same.

We shall now demonstrate that U, H, S, G, and A are state functions, given that you have chosen
compatible equations of state and heat capacities.
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E.1. Numerical Example: Ideal Gas

Case (i): Let'sfirst isothermally compress Argon from (T¢,P;) = (500 K, 101325 Pa) to state
(T,P>) = (500K, 202650 Pa) . Second, we will isobarically heat the gas from

(T1,P») = (500K, 202650 Pa) to (T,,P>) = (600 K, 202650 Pa) . We will assume Argon is an Ideal
Ges.

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.461584e-002 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 3.789554e+000 (J/mol/K)
Delta G = -1.670550e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -5.762826e+000 (Jmol/K)
Delta G = 3.457695e+003 (Jmol) Delta A = 3.457695e+003 (J/mol)

Total Changes

Delta U = 1.247100e+003 (Jmol) Delta H = 2.078500e+003 (Jmol) Delta S = -1.973272e+000 (Jmol/K)
Delta G = -1.324781e+004 (Jmol) Delta A = -1.407921e+004 (J/mol)

Case (ii): Let'sfirst isobarically heat the gas from (T1,P;) = (500 K,101325 Pa) to
(T»,P;) = (600 K,101325Pa). Second, we isothermally compress Argon from
(T»,P;) =(600K,101325 Pa) to state (T,P,) = (600K, 202650 Pa) .

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.461584e-002 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 3.789554e+000 (J/mol/K)
Delta G = -1.612922e+004 (Jmol) Delta A = -1.696062e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -5.762826e+000 (Jmol/K)
Delta G = 2.881413e+003 (Jmol) Delta A = 2.881413e+003 (J/mol)

Total Changes

Delta U = 1.247100e+003 (Jmol) Delta H = 2.078500e+003 (Jmol) Delta S = -1.973272e+000 (Jmol/K)
Delta G = -1.324781e+004 (Jmol) Delta A = -1.407921e+004 (J/mol)

Therelative errors for DU, DH, DS, DG, and DA between the two processes are respectively:
Error =0.000000e+000 0.000000e+000 0.000000e+000 1.373049e-016 1.291968e-016
The errors are zero to machine precision. Therefore, U, H, S, G, and A are state variables for an ideal gas.
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E.2. Numerical Example: van der Waal’s gas with rigorous C,

Case (i): Let'sfirst isothermally compress Argon from (Tq,P;) = (500 K, 101325 Pa) to state
(T1,P>) = (500K, 202650 Pa) . Second, we will isobarically heat the gas from

(T1,P») = (500K, 202650 Pa) to (T,,Py) = (600K, 202650 Pa) . We will assume Argon isavan
der Waal’ s gas with the rigorous heat capacity.

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)

Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.462076e-002 (m”3/mol)

Heat Capacity: Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.080341e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.248022e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247653e+003 (J/mol) Delta H = 2.079605e+003 (J/mol) Delta S = 3.791580e+000 (J/mol/K)
Delta G = -1.670495e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

DeltaU = -2.762778e+000 (¥mol) Delta H = -2.262133e+000 (Jmol) Delta S = -5.767425e+000 (Jmol/K)
Delta G = 3.458193e+003 (Jmol) Delta A = 3.457692e+003 (J/mol)

Total Changes

Delta U = 1.244890e+003 (Jmol) DeltaH = 2.077343e+003 (Jmol) Delta S = -1.975845e+000 (Jmol/K)
Delta G = -1.324676e+004 (Jmol) Delta A = -1.407921e+004 (J/mol)

Case (ii): Let'sfirst isobarically heat the gas from (T1,P;) = (500 K,101325 Pa) to
(T»,P;) = (600 K,101325Pa). Second, we isothermally compress Argon from
(T»,P;) =(600K,101325 Pa) to state (T,P,) = (600K, 202650 Pa) .

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)

Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.462076e-002 (m”3/mol)

Heat Capacity: Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.080341e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.248022e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.248207e+003 (J/mol) Delta H = 2.080710e+003 (Jmol) Delta S = 3.793606e+000 (J/mol/K)
Delta G = -1.612812e+004 (Jmol) Delta A = -1.696062e+004 (J/mol)

Changes due to Change in Pressure

Delta U = -3.316454e+000 (Jmol) Delta H = -3.367100e+000 (Jmol) Delta S = -5.769451e+000 (Jmol/K)
Delta G = 2.881358e+003 (Jmol) Delta A = 2.881409e+003 (J/mol)

Total Changes

Delta U = 1.244890e+003 (Jmol) DeltaH = 2.077343e+003 (Jmol) Delta S = -1.975845e+000 (Jmol/K)
Delta G = -1.324676e+004 (Jmol) Delta A = -1.407921e+004 (J/mol)

Therelative errors for DU, DH, DS, DG, and DA between the two processes are respectively:
Error = 3.470266e-015 3.502530e-015 2.809489%-014 2.746316e-016 1.291968e-016
The errors are zero to machine precision. Therefore, U, H, S, G, and A are state variables for this gas.
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E.3. Numerical Example: van der Waal’s gas with approximate C,

Case (i): Let'sfirst isothermally compress Argon from (Tq,P;) = (500 K, 101325 Pa) to state
(T1,P>) = (500K, 202650 Pa) . Second, we will isobarically heat the gas from

(T1,P») = (500K, 202650 Pa) to (T,,Py) = (600K, 202650 Pa) . We will assume Argon isavan
der Waal’ s gas with the rigorous heat capacity.

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ cubic polynomia Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)
Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.462076e-002 (m”~3/mol)

Heat Capacity: Cp(To,Po) = 2.819216e+001 Cp(Tf,Pf) = 2.866217e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.986489e+001 Cv(Tf,Pf) = 2.032975e+001 (¥mol/K)

Changes due to Change in Temperature

Delta U = 2.009655e+003 (J/mol) Delta H = 2.842160e+003 (J/mol) Delta S = 5.180569e+000 (J/mol/K)
Delta G = -1.713624e+004 (Jmol) Delta A = -1.796820e+004 (J/mol)

Changes due to Change in Pressure

DeltaU = -2.762778e+000 (¥mol) Delta H = -2.262133e+000 (Jmol) Delta S = -5.767425e+000 (Jmol/K)
Delta G = 3.458193e+003 (Jmol) Delta A = 3.457692e+003 (J/mol)

Total Changes

Delta U = 2.006892e+003 (J/mol) Delta H = 2.839898e+003 (Jmol) Delta S = -5.868560e-001 (J/mol/K)
Delta G = -1.367805e+004 (Jmol) Delta A = -1.451050e+004 (J/mol)

Case (ii): Let'sfirst isobarically heat the gas from (T1,P;) = (500 K,101325 Pa) to
(T»,P;) = (600 K,101325Pa). Second, we isothermally compress Argon from
(T»,P;) =(600K,101325 Pa) to state (T,P,) = (600K, 202650 Pa) .

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ cubic polynomia Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)
Final Condition: T =600.000000 (K) and P = 2.026500e+005 (Pa) V = 2.462076e-002 (m”3/mol)

Heat Capacity: Cp(To,Po) = 2.819216e+001 Cp(Tf,Pf) = 2.866217e+001 (Jmol/K)

Heat Capacity : Cv(To,Po) = 1.986489e+001 Cv(Tf,Pf) = 2.032975e+001 (J/mol/K)

Changes due to Change in Temperature

Delta U = 2.008550e+003 (J/mol) Delta H = 2.842160e+003 (Jmol) Delta S = 5.180569e+000 (J/mol/K)
Delta G = -1.655941e+004 (Jmol) Delta A = -1.739191e+004 (J/mol)

Changes due to Change in Pressure

Delta U = -3.316454e+000 (Jmol) Delta H = -3.367100e+000 (Jmol) Delta S = -5.769451e+000 (Jmol/K)
Delta G = 2.881358e+003 (Jmol) Delta A = 2.881409e+003 (J/mol)

Total Changes

Delta U = 2.005233e+003 (J/mol) Delta H = 2.838793e+003 (J/mol) Delta S = -5.888818e-001 (J/mol/K)
Delta G = -1.367805e+004 (Jmol) Delta A = -1.451050e+004 (J/mol)

Therelative errors for DU, DH, DS, DG, and DA between the two processes are respectively:
Error = 8.264738e-004 3.890870e-004 3.451961e-003 1.329860e-016 1.253567e-016
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The errors for DU, DH, and DS are NOT zero to machine precision. Therefore, U, H, and S are not state variables
for a gas described by van der Waal’ s equation of state and an approximate heat capacity.
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F.1. Isochoric Heating/Cooling for Arbitrary Equation of State

There are avariety of different ways for a gas to move from state (T1,P;) to state (T»,P5) and they
don’t necessarily involve an isothermal step and an isobaric step. Now, of course, if we know (Tl, Pl) and
(T5,P5), then the easiest way to calculate DU, DH, DS, DG, and DA is to use an isothermal step and an isobaric
step, because we already have a code written that will do that. However, in engineering practice, we are faced with

problems where we do not know both (To,P5).

Three common examples are isochoric (constant volume), isentropic, and isenthalpic processes. An
isochoric problem occurs when you heat afluid in a container of fixed volume. An isentropic process occurs when
you release a gas from high pressure to low pressure through a throttling valve. An isenthalpic process occurs
when you use an ideal turbine, which drops the pressure of agas. In each of these cases, you don’'t know

(T»,P5). What you do know in an isochoric processis (To, Vo = Vy). Inanisentropic throttling valve,

generally you know (T,So = Sq). Inanisenthalpic turbine, generally you know (Po,Ho =Hy).
So we need to be able to deal with these other processes.
In this section we are going to provide formulae, obtained from the Bridgeman Tables, for the change in

T,P,V,U,H, S, G,andA, dueto an isochoric heating. In this problem, we move from state (Ty,P;) to state
(T2, V2 = V1),

We can do this one of two ways. The most fundamental way isto solve for Py given (To, Vo = V). If
we know (T5,P5 ), we can model the process as first an isobaric change in T from (T4,P;) to (To,Py),

followed by an isothermal changein P from (T5,P;) to (To,P,). That would be the easiest thing to do,

especialy since we have a code to perform isothermal and isobaric steps.
A second way to solve thisisto return to the Bridgeman Tables.
The relevant formulae in the Bridgeman Tables are of the form:

X0
el gy

whereX canbeT, P,V, U, H, S, G, and A. Ineach casg, it is understood that to obtain the macroscopic change,
we must integrate the partial.

To ..
X

DX© Xy - X = 5&n? gt

NV
1

Below, we simply present the partial derivatives.

i. Temperature

T 9

= =1
g‘ﬂTg\/

ii. Pressure
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g (To)y _ &M gy ~@p3
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F.2. Isochoric Heating/Cooling for 1deal Gas

The Ideal Gas has an equation of state

PV =RT or P=E
Vv

and, for a monatomic ideal gas, it has a heat capacity

dpo __RT 4 &pO _R
eVgr V2 Mg, V
i. Temperature
DT:T2-T1
ii. Pressure
o _R
eMMagy V
T2
DP = §dT = (T, - Ty)
\Y
L
iii. Volume
DV:VZ-V_—]_:O
iv. Internal Energy
.2 2
vy o Tema, s T\ s
?1_9 :CP+e—"Q/:_R+L:_R
T gy dpg 2 _RT 2
eV or V2
T2
DU = OngT:gR(TZ- T)
L
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v. Enthalpy

Tf;d"DQZ
Mo _ ., Sy, abo _5

z > =R
811Tg\, ? &lp 0 gﬂTﬂv 2
eV er
T2
DH = 0§R dT = §R(T2 - Ty)
2 2
1
vi. Entropy
S0 _Cp ,eMTay _3R
eMag, T éﬁﬂg 2T
eV or
To .
DS = 03_R dT :ER"‘I@Q
n 2T 2 &N g
vii. Gibbs Free Energy
aé]_Gg :-S+V€;d£9 =-S+R
el oy elll oy
T2 T2
DG= ¢ S+RdT = ¢ SAT+R(T, - Ty)
T1 T1
where the entropy is given as
oo
T Co(TPret) . &TTay
S(T,P) = S(Tref.Pref) + O %dT+ 0 aﬂ—__dP
Tref Pref Qig
eV er
12 _é 5 2P ol 5
O SAT =& Srer +~RIN(Tyef )+ RING=—(T, - Tp)- ZR[(T2In(T,)- T,)- (TyIn(Ty)- Ty)]
o & 2 Pref &) 2

viii. Helmholtz Free Energy
11



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001

A0 _ o

Carn T

ell gy
T2

DA= ¢ SAT=DG- R(T, - Ty)
1
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Example F.2. Numerical Example: Isochoric Heating/Cooling for 1deal Gas

3
Let'sisothermally compress Argon from (T4,P;) = (500 K,101325 Pa) where V4 = 0.0410264m—I to
mo

state (T, Vo = V) = (600K, V7). Wewill assume Argon is an Ideal Gas.

We can write asimple code in MATLAB, which implements the equations in Section F.2. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)
Final Condition: T =600.000000 (K) and P = 1.215900e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 3.789554e+000 (J/mol/K)
Delta G = -1.670550e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -1.515821e+000 (¥mol/K)
Delta G = 9.094929e+002 (Jmol) Delta A = 9.094929e+002 (J/mol)

Total Changes

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 2.273732e+000 (J/mol/K)
Delta G = -1.579601e+004 (Jmol) Delta A = -1.662741e+004 (J/mol)

We can see that the molar volume was constant. We can also see that the pressure increased with
increasing temperature. Theincrease in temperature caused an increasein U, H, and S, which dominated the net
effect of the isochoric heating.
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Example F.2. Numerical Example: Isochoric Heating/Cooling for van der Waal’s Gas

We can evaluate the partial derivatives given in section F.1 for the van der Waal’ s gas with equation of
State

RT a
p=— . 2% (4.8)
V-b 2

and, for a monatomic vdW gas, a heat capacity

_Eg%Pv3- Va+6ab9
2%pPv3- va+2ab 5

Cp

The particular forms of the partial derivatives are not given here.
Let'sisothermally compress Argon from (T4,P;) = (500 K,101325 Pa) where
3
Vi = 0.0410259m—I to state (Tq, Vo = V4) = (600K, V7). Wewill assume Argon is avan der Waal’s
mo

Gas with critical properties T, =150.8 K and P, =4.874 x10°Pa.

We can write a simple code in MATLAB, which implements the equations in Section F.1. where we put
in the form of the van der Waal’s equation of state and heat capacity. This has been done. We use a Fourth-Order
Simpson’s Method with 20 intervals to numerically integrate all the functions. The output of the code is as
follows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)
Final Condition: T =600.000000 (K) and P = 1.216062e+005 (Pa) V = 4.102585e-002 (m”3/mol)

Heat Capacity: Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.079605e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.247653e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247653e+003 (J/mol) Delta H = 2.079605e+003 (J/mol) Delta S = 3.791580e+000 (J/mol/K)
Delta G = -1.670495e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

DeltaU = -5.530410e-001 (Jmol) DeltaH = -4.531654e-001 (Jmol) Delta S = -1.517848e+000 (¥mol/K)
Delta G = 9.102555e+002 (Jmol) Delta A = 9.101556e+002 (J/mol)

Total Changes

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.079152e+003 (J/mol) Delta S = 2.273732e+000 (J/mol/K)
Delta G = -1.579470e+004 (Jmol) Delta A = -1.662675e+004 (J/mol)

We see that there are dlight differences between the van der Waal’ s gas and the ideal gas. First, the molar volume
which we maintain as constant is different than that used for the ideal gas, because what we specified was

(T1,Py).
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G.1. Isenthalpic Compression for Arbitrary Equation of State

Turbines are often approximated as an isenthalpic process. In this case, the gas moves from state
(T4,Py) tostate (To,P»). However, what we generally know about the outlet state is the pressure and the fact
that the enthalpy of the second state is the same as the enthalpy of theinitial state, (P>,Hy =Hj).

In this section we are going to provide formulae, obtained from the Bridgeman Tables, for the change in
T,P,V,U,H, S G, and A, due to an isenthalpic compression. In this problem, we move from state (Tl, Pl) to
state (P2,H2 = Hl)

We can do this one of two ways. The most fundamental way isto solvefor Ty given (Po,Ho =Hyq).
If weknow (T5,P>), we can model the process as first an isobaric changein T from (T1,P;) to (To,Py),

followed by an isothermal changein P from (T5,P;) to (T2,P,). That would be the easiest thing to do,

especialy since we have a code to perform isothermal and isobaric steps.
A second way to solve thisisto return to the Bridgeman Tables. The relevant formulae in the Bridgeman
Tables are of the form:

X
P o

whereX canbeT, P,V, U, H, S, G, and A. Ineach casg, it is understood that to obtain the macroscopic change,
we must integrate the partial.

P2
DX© Xy- Xp = En?

P
1.”2H

dpP

The advantage of the first method is that we already have a code to calculate changes in properties from
(T5,Py) to (T5,P5). Thedisadvantage of the first method is that we must first find, To given

(P>,Hy =Hj). Thisisaniterative process and requires the solution of

e APoO u
e Srre, b
DH = DHjgo- T + DHiso-p = (j?T Bé]Pg\/ 3 P+ Cp(T,P2)dT =0
é e'ﬂVﬂr a
or
- DHiso-p = PHigo- T
é q;a:QTPo u
Pze T ua To
oeTleﬂT“V +VUdP = ¢Cp(T,Py)dT
aéTPo a
é e'ﬂVﬂr a

15



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001

In this process, we evaluate the right-hand side once and iteratively guess To until the system converges. In terms
of the computational effort involved, this method is less efficient because we have to evaluate the integrals for each

guessof To.

If we used the Bridgeman Tables, we would only have to evaluate the integrals once. Therefore, thisisthe
preferred method. Admittedly, thisis not the method | used in the examples in the following sections because |

aready had a code to solve the equations by iterative solution of T, .

Below, we simply present the partial derivatives from the Bridgeman Tables

i. Temperature
TEPS L VEPO 8&“"‘)
EA]_TQ _ (M _ &My &NV~ &Te, V.
&Pgy (o) Ccp E@po c, @6 Cp
eV e'ﬂVﬂr
ii. Pressure
Hp o -1
g'ﬂsz
iii. Volume
2o
cy. Moy ngpo
i 8@9 el gy
Vo (Vi éV gr
éP ey (To)y cp@P O
e'ﬂVﬂr
iv. Internal Energy
R ;
& eMMa, . .,apo6 u, .. apo
Cp + +Vg—/—= -tV I
e ol 8T PN or
Avo (W), 8 Mo o
P gy (Toky &g
eV or

v. Enthalpy
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AHo _
&P o
vi. Entropy
Ve, &po U
7@ 7+ 7
sy (1) _ TE Mo v
&Pey (P o o T
PGy
eV or

vii. Gibbs Free Energy

- V]cp +sfIPY 78RO

4G _ (1G)y _ SNor Moy
&P gy (1) c &P 0
e'ﬂVﬂT

viii. Helmholtz Free Energy

o
D> > D (D> D> D
o
+
+
=
<
(n
_|

gAs _ (TA)y _

&P g (T PO

Many of the function forms of the partials are quite ugly, but it doesn’t matter since we are going to
numerically integrate them anyway.
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G.2. Isenthalpic Compression for Ideal Gas

The Ideal Gas has an equation of state

PV =RT or P=E
Vv

and, for amonatomic ideal gas, it has a heat capacity and pressure derivatives given by

C :§R ?ﬂg :-ﬂ and ?Eg :5
Pr2 &Vgr V2 eMay V
i. Temperature
Tgaﬂg TB
Ao _  ellfey V _ vy _L:o
elP &y Cpﬂpg Cp O ﬂ §R
eV gr 2 vz 2
ii. Pressure
@9 =1
§tn g,
iii. Volume
.2
1&b R
oo MMay by s, Tv2 R
gﬂﬁg et oy 2 _RT \
Vo &N - v
&P 4 & 0 >R RT RT
C + R 2
eV gr 2. v
iv. Internal Energy
A 2
: &P g ;
o OToy a0 U, & alpg U
5 8{4&9 eMavy & eVerg +V§!ﬂp(5@
&P g - cp@Po -gPe
eV gr elVor
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v. Enthalpy

gdHo _

eTP &y

vi. Entropy

vii. Gibbs Free Energy

Vice +SES - sTERY

Gy _ Nor ~ &My _,,
efP gy _Cpaﬂpb
eV gr
DG:RTH‘]&FQT
PLg
viii. Helmholtz Free Energy
é
é e a 0 0
pLp+— Y +[pV ST] °P SVg P
T Moy Moy
ano & CTVer g v
eTP &y _cpEPO
eV gr

DA = DG =RTIng-2 2
P1 g
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Example G.2. Numerical Example: Isenthalpic Compression of an Ideal Gas

Let'sisenthalpically compress Argon from (T¢,P;) = (500 K, 101325 Pa) to state
(P, =10P;,H, =H7). Wewill assume Argon is an Ideal Gas.

We can write a simple code in MATLAB, which implements the equations in Section G.2. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Final Condition: T =500.000000 (K) and P = 1.013250e+006 (Pa) V = 4.102640e-003 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -1.914369e+001 (¥mol/K)
Delta G = 9.571846e+003 (Jmol) Delta A = 9.571846e+003 (J/mol)

Total Changes

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -1.914369e+001 (¥mol/K)
Delta G = 9.571846e+003 (Jmol) Delta A = 9.571846e+003 (J/mol)

We see that there is no temperature change associated with an isenthal pic compression of an ideal gas.

P, 0 a5 0

T, =T1 =500 K. We seethat the entropy isgiven by DS =-RIn —zi and DA = DG =RTIn —zi.
P1g PL g

The entropy change is negative because we are reducing the molar volume of the gas by compressing it.

The free energy changes are positive since only the entropic effect is present and it is multiplied by -T in the
definition of the free energy.
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Example G.3. Numerical Example: Isenthalpic Compression of avan der Waal’'s Gas

We can evaluate the partial derivatives given in section G.1 for the van der Waal’ s gas with equation of
State

RT a
p=— . 2% (4.8)
V-b 2

and, for a monatomic vdW gas, a heat capacity

_Eg%Pv3- Va+6ab9
2%pPv3- va+2ab 5

Cp

The particular forms of the partial derivatives are not given here.

Let'sisenthalpically compress Argon from (Tq,P;) = (500 K, 101325 Pa) to state
(P2 = 1OP1,H2 = Hl) .

We can write a simple code in MATLAB, which implements the equations in Section G.1. where we put
in the form of the van der Waal’s equation of state and heat capacity. This has been done. We use a Fourth-Order

Simpson’s Method with 20 intervals to numerically integrate all the functions. The output of the code is as
follows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)

Final Condition: T =501.439937 (K) and P = 1.013250e+006 (Pa) V = 4.114227e-003 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.091691e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.253747e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.796698e+001 (Jmol) DeltaH = 2.994814e+001 (Jmol) Delta S = 5.981019e-002 (¥mol/K)
Delta G = -2.377710e+002 (Jmol) Delta A = -2.497522e+002 (J/mol)

Changes due to Change in Pressure

DeltaU = -2.976305e+001 (¥mol) Delta H = -2.994814e+001 (Jmol) Delta S = -1.920628e+001 (¥mol/K)
Delta G = 9.600846e+003 (Jmol) Delta A = 9.601031e+003 (J/mol)

Total Changes

DeltaU =-1.179606e+001 (¥mol) DeltaH = 7.354117e-013 (Jmol) Delta S = -1.914647e+001 (¥mol/K)
Delta G = 9.363075e+003 (Jmol) Delta A = 9.351279e+003 (J/mol)

We see that there are slight change in temperature for the isenthal pic compression of avan der Waal’sgas. This
resultsin small changesin U. However, see that the total change in the enthalpy is still zero (within machine
precision) because the process is isenthalpic.
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H.1. Isentropic Expansion for Arbitrary Equation of State

Expansion valves are often approximated as an isentropic process. In this case, the gas moves from state
(T4,Py) tostate (To,P,). However, what we generally know about the outlet state is the pressure and the fact

that the entropy of the second state is the same as the enthalpy of the initial state, (P»,So =Sq).

In this section we are going to provide formulae, obtained from the Bridgeman Tables, for the changein
T,P,V,U,H, S G, and A, due to an isentropic expansion. In this problem, we move from state (Tl, Pl) to state
(P2,S2 =S3).

We can do this one of two ways. The most fundamental way isto solvefor T, given (P2,S5 =S7).
If weknow (T5,P5), we can model the process as first an isobaric changein T from (T1,P;) to (To,Py),

followed by an isothermal changein P from (T5,P;) to (T2,P,). That would be the easiest thing to do,
especialy since we have a code to perform isothermal and isobaric steps.
A second way to solve thisisto return to the Bridgeman Tables. The relevant formulae in the Bridgeman

Tables are of the form:
X9
eflP o5

whereX canbeT, P,V, U, H, S, G, and A. Ineach casg, it is understood that to obtain the macroscopic change,
we must integrate the partial.

P2 e
DX° X5 - X1 = 9En? gp

p €TP a5
The advantage of the first method is that we already have a code to calculate changes in properties from

(T5,Py) to (T5,Py). The disadvantage of the first method is that we must first find, To given
(P>,S» =S;). Thisisaniterative process and requires the solution of

o édpo U .
284 o, U 2
DS = DSiso- 1 + DSiso-p = \geﬂ—r—?vl;' dP + Owﬁ:o
ead]po u T
ee gTu'I'=T1
or
- DSiso-p =DSiso- 1
28T &, U 2
- Oge.l]—r_g\/l} dpP = Omﬁ
edpd u T
Plecoo ™ T
éeﬂ\/g-rl}l'=Tj_
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In this process, we evaluate the right-hand side once and iteratively guess To until the system converges. In terms
of the computational effort involved, this method is less efficient because we have to evaluate the integrals for each
guessof To.

If we used the Bridgeman Tables, we would only have to evaluate the integrals once. Therefore, thisisthe
preferred method. Admittedly, thisis not the method | used in the examples in the following sections because |

aready had a code to solve the equations by iterative solution of T, .

Below, we simply present the partial derivatives from the Bridgeman Tables

i. Temperature
T ¢ _(M)s _ &gy
&Pa  (Tp)s ) Cigdﬁg
T eV
ii. Pressure
@9 =1
g‘ﬂpas
iii. Volume
2 o
) Cp ) e'ﬂT
o 0 alp &
avo _(V)s _ éVer . 1 T &My,
éPes (P)s _CpalPd  &P8  CPaps
T eV eV gr &V gr
iv. Internal Energy
é 2 U
e @roy
p&Cp el ay i
é -
e &PO
o _(Ws_ & Mo aavo
éPas () Ce gl éTP g5
T elVor
v. Enthalpy
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Ve o o u
-V S
o _(H)s T "eNVora_,,
éPas (Tp)s _Cp o 0
T elVor
vi. Entropy
ASo _
1P o
vii. Gibbs Free Energy
Ve, afpo U . adpo &l 6
- 7@ I - Sc+ — =
AGo _(16)s _ Te eNorg eMay _,, TSEMa
P (T0)s Cegpo Ce &b 0
T elVar eV gr
viii. Helmholtz Free Energy
&Cp efTayl _adpo
pe?’L 0 SCer T
¢! POy ellay P &
agny () & cMerg __@Vo ,TSEMMa
&P o (Tp)s Ceapo &P e Co b0
T elVer eV gr

Many of the function forms of the partials are quite ugly, but it doesn’t matter since we are going to
numerically integrate them anyway.
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H.2. lsentropic Expansion for 1deal Gas

The Ideal Gas has an equation of state

PV =RT or P=—
Vv

and, for amonatomic ideal gas, it has a heat capacity and pressure derivatives given by

C. =°R 8@9 __RT aod 2O _R
P2 &NVg V2 Mg, V
i. Temperature
alp o
Ao . &May  _2v_2T
&P o CrglPo SR SP
T eV
T2 P2
o1dT =2 &idp
T 5 °P
T1 Py
|n@g:g|n&g
19 © 19
2
T, _aP,05
T gplé
2
aP, 05
T2:T1gp—2;
19
2 é 2
aP, 05 &P, 05 U
DT=T,- Ty =Tig2% - 1 =Tig 27 -1
Plﬂ Plﬂ U
e 1]
ii. Pressure
@9 =1
g‘ﬂpas
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iii. Volume
2
o ¢ o ¢
Vo __ 1 TeMey 1 TEMa _ 3v2_ 3V
éfPos &P ¢ CpadEQZ 8@9 CpaﬂpQZ 5RT  5p
Wor  gvgr eNVar  gvg
V2 P2
o~dv=-32 1P
5P
\41 P1
.3
a0 5
szvlgp—zi
10
23 é 3w
Dv:vz-vlzvla%g5-\/1:\/199&%5_13
10 10 G
e u
iv. Internal Energy
AUo __ Vo _3RT

&P ' &Pa  5p

We have already solved T as afunction of p above. Substitute the result in.

2
P2 ) —P2 3
3RT &1 05 1,12 3RT; &1 65
DU=""16=2 3= (P)sdP =152 3P 5dP
5 P1g = 5 19 p
é 2 0
3RT &P, 05 U
pu="1g"22" 15
e u
v. Enthalpy
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gHo _,, _RT
&P g5 P
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3 2 19 U
e u
vi. Entropy
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We leave the functional evaluation of DG and DA to the reader. Thiswill get alittle ugly since the
entropy has its own temperature and pressure dependence.

27



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001

Example H.2. Numerical Example: Isentropic Expansion of an Ideal Gas

P
Let'sisentropically expand Argon from (T1,P;) = (500 K, 101325 Pa) to state (P, = ?1,82 =S).
We will assume Argon is an Ideal Gas.

We can write a simple code in MATLAB, which implements the equations in Section H.2. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Final Condition: T =378.929142 (K) and P = 5.066250e+004 (Pa) V = 6.218439e-002 (m"3/mol)

Heat Capacity: Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = -1.509875e+003 (Jmol) Delta H = -2.516458e+003 (Jmol) Delta S = -5.762826e+000 (Jmol/K)
Delta G = 1.965637e+004 (Jmol) Delta A = 2.066296e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 5.762826e+000 (J/mol/K)
Delta G = -2.183703e+003 (Jmol) Delta A = -2.183703e+003 (J/mol)

Total Changes

Delta U = -1.509875e+003 (¥mol) Delta H = -2.516458e+003 (Jmol) Delta S = 8.881784e-016 (Jmol/K)
Delta G = 1.747267e+004 (Jmol) Delta A = 1.847925e+004 (J/mol)

We see that there is no temperature change associated with an isentropic expansion of an ideal gas. We
see also that the change in temperature is negative, i.e. the gas cools. Thisisthe principle behind aflash tank.
We see that the change in entropy is zero (to machine precision), since the process is isentropic.
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Example H.3. Numerical Example: Isentropic Expansion of a van der Waal’s Gas

We can evaluate the partial derivatives given in section H.1 for the van der Waal’ s gas with equation of
State

RT a
p=— . 2% (4.8)
V-b 2

and, for a monatomic vdW gas, a heat capacity

_Eg%Pv3- Va+6ab9
2%pPv3- va+2ab 5

Cp

The particular forms of the partial derivatives are not given here.
Let'sisentropically expand Argon from (T1,P;) = (500 K, 101325 Pa) to state

P
(P2 231,52 =S1).

We can write a simple code in MATLAB, which implements the equations in Section H.1. where we put
in the form of the van der Waal’s equation of state and heat capacity. This has been done. We use a Fourth-Order
Simpson’s Method with 20 intervals to numerically integrate all the functions. The output of the code is as
follows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)

Final Condition: T =378.913543 (K) and P = 5.066250e+004 (Pa) V = 6.217081e-002 (m”3/mol)

Heat Capacity: Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.079656e+001 (Jmol/K)

Heat Capacity: Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.247678e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU =-1.511130e+003 (¥mol) Delta H = -2.518903e+003 (Jmol) Delta S = -5.768600e+000 (¥mol/K)
Delta G = 1.965780e+004 (Jmol) Delta A = 2.066557e+004 (J/mol)

Changes due to Change in Pressure

DeltaU = 2.189213e+000 (J/mol) Delta H = 2.746023e+000 (Jmol) Delta S = 5.768600e+000 (J/mol/K)
Delta G = -2.183055e+003 (Jmol) Delta A = -2.183612e+003 (J/mol)

Total Changes

DeltaU = -1.508941e+003 (¥mol) DeltaH = -2.516157e+003 (Jmol) Delta S = 8.881784e-016 (Jmol/K)
Delta G = 1.747474e+004 (Jmol) Delta A = 1.848196e+004 (J/mol)

We can compare these results to those for the ideal gas to determine the effects of the van der Waal’ s equation of
state.
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