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Moving toward fuel cell-powered vehicles

understanding
starts at the
quantum level

H,-powered autos
become a reality

leads to high-fidelity
coarse-grained models

impacts fuel
cell performance
25k X200 115.]m— I

improved nanoscale design
of membrane/electrode
assembly
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how fuel cells work: conceptual level
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proton exchange membranes are polymer electrolytes
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indl_Jstry standard: sulfonic acid at
Nafion (DuPont) end of side chain
perfluorosulfonic acid provides protons

monomer backbone contains CF,.

side chain

CF, =gray, O =red, S = orange, cation not shown.
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Proton Transport in Bulk Water and PEM
Experimental Measurements
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Robison, R. A.; Stokes, R. H. Electrolyte Solutions; 1959.
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Nafion (EW=1100) Kreuer, K. D. Solid State lonics 1997.
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& (water per sulfonic acid)

Even at saturation, the self-diffusivity of charge in Nafion is 22% of that in bulk water.
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morphology of bulk hydrated membrane
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EW = 1144 : gk 3»1,4 Tﬁﬁu
A= 6 H,O0/HSO,4 ' LS, .
T=300K
Snapshots of the
aqueous
nanophase
PEM

morphology is
a function of
water content.
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i
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low water (A = 6)
small aqueous
channels
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legend:

O of H,0O =red
H= white

O of H;0* = green
S = orange
remainder of
polymer
electrolyte

not shown

| high water (A = 22)
J large aqueous
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Proton Transport — Two Mechanisms

Vehicular diffusion: change in position of center of mass of hydronium

ion (H;07)

O of

0" —>
H—m— translation

Structural diffusion (proton shuttling): passing of protons from water
molecule to the next (a chemical reaction involving the breaking of a

covalent bond)
O of

HzO_l

proton
hops

In bulk water, structural diffusivity is about 70% of total diffusivity.
Fundamentals of Sustainable Technology
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Proton Transport in AQueous Systems

|. Introduction

ll. Levels of Modeling
lI.LA. Quantum Mechanics
lI.B. Reactive Molecular Dynamics
II.C. Confined Random Walk Theory
[I.D. Percolation Theory

lll. Conclusions
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Understanding of fundamental mechanism of structural diffusion

0 T T
Hydronium ions exist as hydrated ion [ 1 VAR
complexes like By VAN i
\ e N SDW
% 50 11 ) /?/ :‘.:\ o ;l
Zundel ions (H;0,%) £ A /f e RO
= AN 7= N
> LN
4 -0 f w7 RRW ;
o | RS
'\\ J I\\_
i s HRR -
-150
-0.6 l -[]I.4 ' -UI.E . {)T(} I 072 I 074 I 0.6
. L +
and Eigen ions (HyO,") (b) f(O-H) - 2.80/2 (A)

FIG. 3. Proton-transfer energy profiles in the Hs;O; ion given by various
methods. The distance between the two water molecules was fixed at (a)
R(0-0)=240A (the optimized MP2 value at equilibrium) and (b) at R
=280A. The proton is moved along and on the line connecting the two
oxygen atoms. The other geometrical parameters are always fixed at the
equilibrium MP2 values. The energy 1s given relative that of the free oxo-
nium and water monomers. The potentials shown are OS52 (dashed line),

structural diffusion or
Proton hopping
involves a reaction

in which the grou nd MP?2 (solid line), MP4 (short dashes), B3LYP (thin solid line), REF (thin
. . . . solid line with open circles), PM3 (filled circles). LS (+). SDW (dash-dot
State IS Ilkely an Elgen ion and the line) and HRE (tlhun dash-dotted line). Corresponding results for the

0SS1{p)—3(p) potentials are grven mn Fig. 4.

transition state is a Zundel ion. o o
Ojamae, Shavitt, Singer

Fundamentals of Sustainable Technology J. Chem. Phys. 1998
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Zundel & Eigen lons

Quantum Mechanics Molecular Dynamics

B

Zundel ion

MD atr=4.4

Huang, Braams, Bowman,
J. Chem. Phys. 2005

Eigen ion

MD atr=4.4

Ojamae, Shavitt, Singer
J. Chem. Phys. 1998

MD simulations will only approximate the structures from Quantum Mechanics.
Fundamentals of Sustainable Technology
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Proton Transport in AQueous Systems

|. Introduction

ll. Levels of Modeling
lI.LA. Quantum Mechanics
lI.B. Reactive Molecular Dynamics
II.C. Confined Random Walk Theory
[I.D. Percolation Theory

lll. Conclusions

Fundamentals of Sustainable Technology

nterdisciplinary Researc



STAI R

Sustainable Techn Iq_yh g
Advanced Interdis ary Research

Reactive Molecular Dynamics (RMD)

Quantum

Equivalent Descriptions Macroscopic

Evaluation of
reactant and product
concentrations and
temperature as
functions of time

Comparison of
equilibrium state and
transition state

Small systems,
short time scales

U

1. Ground state
structure

Macroscales

U

1. Mechanism

(stoichiometry)

2. Transition state Activation energy
structure & . Heat of reaction

3. Geometric reaction . Reaction rate
path constant

Reactive
Molecular Dynamics

Simulation of
coupled reaction and
transport

N

A
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Variety of Approaches of Simulation of Structural Diffusion
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Author Year Method Features System
R. Car & _ . i
ar. Car , » Computationally expensive Excess H"in H,0 [2]
M. Parinello [1] 1985 Parrinello . Restricted to small svstems « Nonaqueous hydrogen
MD y bonded media
» Charge transfer theory of hydrogen +
Empirical bondged complexes Y OTVESS * Excess H"in H,0 [4,9]
A. Warshel [3 1980 Valence * Enzymes
3] Bord - Used to develop MS-EVB, SCI-MS-EVB, 2y
MS-EVB3
RG.Schmidt& | | Mixed MD ) grito',” hog,p'tng bet;”‘:e” t't“;tab'e S'tzs + Excess H* in H,0
J. Brickmann [6] and MC ritenia - Listance between donor an * Proton in amino acid
acceptor
MA. Lill & « Proton hopping between titratable sites * Excess H* in H,O
L 2001 Q-HOP MD | « Criteria - Distance and environmental * Aspartic acid in H,O
V. Helms [7]

effect of the surrounding group

* Imidazole ring in H,0O

[1]1 R. Car and M. Parrinello, Phys.Rev.Lett., 55, 2471 (1985).

[2] M. Tuckerman, et al., J.Chem.Phys., 103, 150 (1995).

[3] A. Warshel and R.M. Weiss, J. Am. Chem. Soc., 102, 6218 (1980).

[4] J. Lobaugh and G.A. Voth, J. Chem. Phys., 104, 2056 (1996).

[5] D.E. Sagnella and M.E. Tuckerman, J. Chem. Phys., 108, 2073 (1998).

[6] R.G. Schmidt and J. Brickmann., Ber. Bunsenges. Phys. Chem., 101, 1816 (1997).
[71M.A. Lill and V. Helms, J. Chem. Phys., 115, 7993 (2001).

Fundamentals of Sustainable Technology
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RMD Algorithm — Step 1

H,0" +H,0«%%° 3H O+ H,0"

At each step of conventional MD simulation, check if reactant (H;O") is in a reactive
configuration.

Step 1. Satisfy triggers (6 geometric and 1 energetic)

el I g

r.OO,ZundeI = r.OO,ZundeI,max r.OH,ZundeI 2 r.OH,qubm

/'.._ "
o

o0, Eigen < '00,Eigen,max 00, hydration < 00, hydration,max

Fundamentals of Sustainable Technology
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RMD Algorithm — Step 2

Step 2. Instantaneous Reaction

O of H;0* = green

H = white

® &
X

= Exchange identities of H;0* and H,O molecules

= Move proton over to the newly formed hydronium ion so that ry, of the hydronium
before and after reaction are the same

Fundamentals of Sustainable Technology
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RMD Algorithm — Step 3

Step 3. Local Equilibration
e There is an increase in the potential energy of the system and disturbance of

structure
+ nH (@] :
H O we T HZO L 0 . After reaction
PRILLFCRIN
H.O 4 + H,Oye < +H,Q During Local Equilibration

e Helps in restoring system structurally and maintaining the correct heat of reaction

Objective Function O of H;0* = greetr‘

energetic term H = whit (

Fopj = VV1 w,Ag(r)™
AU RMS _ \/(U After -U BeforeJ \ \

U

Before

2
pairs _ rtarget
Aa(r RMS — .
9(r) \/Npa.rs ,Z‘ [ target J Snapshot representing the complex
hydrogen bonding network

Fundamentals of Sustainable Technology



Proton Transport in Bulk Water

reaction: H;O0*+ H,0 - H,O + H;0*
rate law: rate = k [H;O0*][H,O]

E
k =k expl ——2
o &XP RT

e Adjust triggers to fit
experimental rate.
e Predict transport properties.

Rate Constant (10° I/{mol.s))
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=#=Experimental
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280 290 300 310 320 330
Temperature (K)

Luz, Z.; Meiboom, S. J. Am. Chem,

experimental data from
Soc., 1964.

RMD rate constant within 6% of experiment.

Diffusivity (m2/s)

Fundz

2.00E-08

1.50E-08

1.00E-08

5.00E-09

0.00E+00

=+Tot Diff (Expt)
+ Tot Diff (Simulation)
=8=Struct Diff (Estd)
m  Struct Diff (Simulation)
=4=Veh Diff (Estd)
Veh Diff (Simulation)

270 280 290 300 310 320
Temperature (K)

~ v

330

Charge self-diffusivity prediction
e semi-quantitative agreement with
experiment
e decomposition into structural and
vehicular components
e structural is 60-70% of total
e correct temperature dependence
e structural and vehicular
components are uncorrelated

D.. lim <ArV§h > + <Arsfruct > + 2 ATy AFyrer)

70 2dr
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Acidity and Confinement Effects on Proton Mobility

confinement

acidity

bulk hydrochloric acid water in PFSA membranes

\4

Fundamentals of Sustainable Technology



Water and Proton Transport in Nafion (Method 1)
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diffusivity (10" cm?/s)

10

—&— experimental

—— nonreactive system
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- D

SIruwct

Introducing structural diffusion into the simulation via the same RMD algorithm that

was used for bulk water, HCI solutions and water in carbon nanotubes
e provided a correct quantitative trend

e but the total charge diffusivity was too large

e the vehicular component significantly increased relative to nonreactive MD

The presence of reaction disturbs the local hydrogen-bonding network , resulting in

higher mobility of protons (and water (not shown)).

Fundamentals of Sustainable Technology
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Figure 1. Typical structure of the reactants surrounded by six hydrating
molecules in the bulk water system. Atom and molecule labels serve tor
identification purposes in Table 2. O of H3O", green; O of H,0, red;
H, white.

Include more water molecules in local equilibration after instantaneous reaction.

Fundamentals of Sustainable Technology
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Water and Proton Transport in Nafion (Method 2)

50
5'] ! | I | | ! I ! |
- 40
—®— experimental -:;
—C— nonreactive system < W
’;‘5‘ 40 I - I:]m.r 7 %
e D £
E —_— veh é
*?u wE Ditenc i = oop
=
— 0 1 1 1 1 L 1 1
o’ 4 6 8 10 12 14 16 18 20 22 24
£ A
= 2 F -
=
= Method 1
© 1wt .
0
4 24

Introducing a more stable hydrogen-bonding network after reaction
e provided a correct quantitative trend

e significantly improved quantiative agreement.

e the vehicular component now similar to nonreactive MD

Still observed higher water diffusivity.
Fundamentals of Sustainable Technology



Correlations in Proton Transport
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>

(A72 ) + (AF2 ) + 2{AF A

struct>

Dtnt — Ii m struct

T — 0 Zd'r:

The above definition can be decomposed as

(AF?
Dyeh = wch
veh . me > dt
D — lim <AF§truct>
struct — it 2dT
UAF AT )
D = lim veh struct
corr oo ZdT

(9b)

(9¢)

The correlation term is zero in bulk water, HCI solutions and in carbon nanotubes.

Fundamentals of Sustainable Technology
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Proton Transport in AQueous Systems

|. Introduction

ll. Levels of Modeling
lI.LA. Quantum Mechanics
lI.B. Reactive Molecular Dynamics
II.C. Confined Random Walk Theory
[I.D. Percolation Theory

lll. Conclusions
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morphology of bulk hydrated membrane

Nafion

EW = 1144
%= 6 H,0/HSO,
T =300 K

Snapshots of
the aqueous
nanophase
show a tortuous
path.

legend:

O of H,0 =red
H= white

O of H;0O* = green
S = orange
remainder of polymer electrolyte not shown

Fundamentals of Sustainable Technology
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PEM morphology is a function of water content

T
3, l‘?,'t:

N aey,
Ly,
DOrN i e o\ e ‘V‘w
1 N -..I"

Nafion (EW = 1144) . = 6 H,O/HSO, Nafion (EW = 1144) A = 22 H,0/HSO,
small aqueous channels much larger aqueous channels

As the membrane becomes better hydrated, the channels in the aqueous domain
become larger and better connected, resulting in higher conductivity.

(The challenge to finding high-temperature membranes is to find one that can
retain moisture at elevated temperatures.)

Fundamentals of Sustainable Technology
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Einstein Relation — long time slope of mean square displacement to

observation time V ,
msp . {[n(t+ )T @)]) positonor
D=lim———=1lim partlclelat
T—>0 2d T T—0 2d T time t
400

5‘.; —+=|ambda=3

— 350 1 ==~lambda=6
Einstein Relation works £ lambda =9 S
300 i =e=lambda=15 —
well for bulk systems. = e 3
& 250 - O
: L o £
But for simulation in A 200 1 g

’ ()
PEMSs, we can't reach 8 150 | g
the long-time limit 3 o
. . . c 100 A )
required by Einstein 3 =
relation. = 501 2
0 i T T — -
=
time (fs)

are not long enough.
MSDs don’t reach the long-time (linear) regime.

Fundamentals of Sustainable Technology
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Confined Random Walk Simulation
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=

Mesoscale Model

e non-interacting point particles (no energies, no forces)
e sample velocities from a Maxwell-Boltzmann distribution
e two parameters
o cage size
o cage-to-cage hopping probability
e parameters fit to MSD from Molecular Dynamics Simulation
e runs on a laptop in a few minutes

D.J., Nicholson, D.M., Egami, T”, Phys. Rev. E, 83(1) 2011 article

Calvo-Munoz, E.M., Esai Selvan, M., Xiong, R., Ojha, M., Keffer,
# 011120.

unsuccessful move successful move

Fundamentals of Sustainable Technology
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Couple MD with Confined Random Walk (CRW) Theory

-9

400 88
=+|ambda =3 g @

350 |1 ===lambda==6 Eé

lambda=9 -

300 | =-e-lambda=15 53
lambda = 22 o W

o 250 1 —Random walk Model QE
< L
N—’ X »n

a) 200 - P 2

) =0
cC =

= 150 gk
S &

100 O

w -

< =

)

50 e

N 2

0 T T T ] zg_g

0.0E+00 2.0E+05 4.0E+05 6.0E+05 8.0E+05 1.0E+06 =z

S

on

# 011120.

time (fs)

e Fit MD results (1 ns) to Confined Random Walk (CRW) Theory.
e Extend Mean Square Displacement to long-time limit (100 ns).
e Extract water diffusivity.

Fundamentals of Sustainable Technology
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Comparison of MD/CRW Simulation with Experiment

v

ustainable Technology through
dvanced Interdisciplinary Research

=

1.2E+00 N

W experiment S5 2

. . o O 0

A MD/CRW simulation ~ <

w a7

1.0E+00 N c 2 -
o £ 7 .
.-ig 9 D -
=
3 %R

]

- 2 8.0E-01 g (4/—4) = -
(D) 2 - Q <
-— 2 5o Xo
© £ 535 -89
= |3 g 0N =«
* 6.0E-01 o . uwE
S 5 S ya
g : X O«
~ ) T - cq
3 = 3D 0o
> o 4.0E-01 - o s
.(T) = ‘ g fat g —
- " <X 3D
= » g 9
O 2.0E-01 fedJs
1 < < ©
u— l SR
O | ¥ < g©°
n L)

B ) c U=
O_0E+00 T T T T T 77 8 C (D E‘
0 5 10 15 20 25 buk | 5 & F o
O @ w L
water conent (water molecules/excess proton) X Z2 wo

e Excellent agreement between simulation and experiment for water
diffusivity as a function of water content
e Can we predict the self-diffusivity of water without computationally

expensive simulations?
Fundamentals of Sustainable Technology
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Proton Transport in AQueous Systems

|. Introduction

ll. Levels of Modeling
lI.LA. Quantum Mechanics
lI.B. Reactive Molecular Dynamics
II.C. Confined Random Walk Theory
[I.D. Percolation Theory

lll. Conclusions
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Three Factors: Acidity, Confinement & Connectivity Hé;‘" STA' R
l'Il-lh.-bl- -'ﬁ" 9}* thro 9 B
bulk water water in PFSA membranes
‘e (Nafion EW=1144)
° H3O+ concentration is dilute |-|3o+ concentration
>
Sl == ciqns . _ e 1.=3 H,O/HSO,, pH =-0.59
[ 1=5.6-10% H0/H" (pH=7) (minimally hydrated)
o \=22, pH=-0.22 (saturated)
= interfacial surface area
o
£ | o interfacial surface area is e 163 A?/H,0 or 2460 m?/g
= | zero (A=3)
S ¢ 23 A2/H,0 or 1950 m?/g
© (A=22)
=
2 e connectivity of aqueous
(@) . .
@ | o no connectivity issues domain deteriorates as water
= content decreases
&)

Fundamentals of Sustainable Technology
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Acidity and Confinement Effects on Proton Mobility

confinement

acidity

bulk hydrochloric acid water in PFSA membranes

\4
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Water Mobility in Bulk HCI solutions — Effect of Acidity
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1.1

1.0

0.9 -

0.8 ~

0.7 ~

reduced self-diffusivity

01 D(c)=D(c =0)exp(— k)

experiment
exponential fit

0.5 T T T
0 2 4 6

molarity (mol/l)

10

Dippel, T.; Kreuer, K. D. Solid State lonics 1991, 46, 3-9.

e In bulk systems, the diffusivity of water decreases as the concentration

of HCl increases.

e The behavior is well fit by an exponential fit.

Fundamentals of Sustainable Technology
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Water Mobility in Nanotubes — Effect of Confinement
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e
I

=

1.8

1.6 1 ® MD simulation
exponential fit

1.4 1

1.2 1

1.0 1

reduced self-diffusivity

0.8

D(SA)= D(SA = 0)exp(-k,SA) .

06 T T T T
20 30 40 50 60 70

Esai Selvan, M.; Keffer, D. J.; Cui, S.; Paddison, S. J. Molec.

Sim. 2010.

surface area (A*/water molecule)

e In carbon nanotubes, the diffusivity of water decreases as the radius of
the nanotube decreases.
e The behavior is fit by an exponential fit.

Fundamentals of Sustainable Technology



Water Mobility in Bulk Systems — Effect of Connectivity

Invoke Percolation Theory to account for
connectivity of aqueous domain within PEM
and obtain effective diffusivity.

Deff -D

O(Z—ljDﬁ—+D
2

g(D) = pEMAg(D_ Db)+(l_ pEMA)g(D_ Do)

g(D)dD =0

& 4 . . o . o % & '.-'
Percolation theory relates the effective diffusivity to the fraction of bonds
that are blocked to diffusion.

C 1
no blocked bonds some blocked bonds beyond threshold
D=Dopen O<D<Dopen D=0

Fundamentals of Sustainable Technology



Structure-Based Analytical Prediction of Self-diffusivity
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e Acidity — characterized by concentration of H;O* in aqueous domain

(exponential fit of HCI data)

e Confinement — characterized by interfacial surface area

(exponential fit of carbon nanotube data)

e Connectivity — characterized by percolation theory

1.2E+00

W experiment

A MD/CRWsimulation
1.0E+00 1

===model-intrinsic D from HCI/CNT simulations

ity

8.0E-01

6.0E-01

reduced self-diffusiv

4.0E-01

2.0E-01

-
-

0.0E+00 |

Esai Selvan, M., Calvo-Munoz, E.M., Keffer, D.J., J. Phys.

Chem. B 115(12) 2011 pp 3052—-3061.

water content (water molecules/excess proton)

bulk

(fit theory to MD/CRW water diffusivity in PEMSs)

Excellent agreement of
theory with both
simulation and
experiment.

Theory uses only
structural information to
predict transport property.

Water is solved!
What about charge
transport?

Fundamentals of Sustainable Technology
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What about Proton Transport?

We have shown thus far that we can model the transport of water fairly
accurately using either

1. detailed MD/CRW simulation (months on a supercomputer)

2. analytical model based on acidity, confinement & connectivity
(minutes on a laptop computer)

We now want to repeat this process for protons. After all, it is the
transport of protons that completes the electrical circuit in a fuel cell.
Why did we start with water?

Diffusion of water is easier to describe.

Water is transported only via vehicular diffusion (changes in the center of
mass of the water molecules).

There are two mechanisms for proton transport.

Fundamentals of Sustainable Technology
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Proton Transport — Two Mechanisms

Vehicular diffusion: change in position of center of mass of hydronium

ion (H;07)

O of

H30+ >
H—7— translation

Structural diffusion (proton shuttling): passing of protons from water
molecule to the next (a chemical reaction involving the breaking of a

covalent bond)
O of

HQO_l

proton
hops

In bulk water, structural diffusivity is about 70% of total diffusivity.
Fundamentals of Sustainable Technology



Proton Transport in Bulk Water

reaction: H;O0*+ H,0 - H,O + H;0*
rate law: rate = k [H;O0*][H,O]

E
k =k expl ——2
o %P RT

e Adjust triggers to fit
experimental rate.
e Predict transport properties.

Rate Constant (10° l/[{mol.s))

3
3
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16

14

12

10 4

270

=+=Experimental

B Simulation

T T T T
280 290 300 310 320 330
Temperature (K)

Luz, Z.; Meiboom, S. J. Am. Chem

experimental data from
Soc., 1964.

RMD rate constant within 6% of experiment.

2.00E-08
=¢=Tot Diff (Expt)
+ Tot Diff (Simulation)
=8=Struct Diff (Estd)
1.50E-08 -
— m Struct Diff (Simulation)
E':P‘ =d=Veh Diff (Estd)
é Veh Diff (Simulation)
2 |
s 1.00E-08 {
w
=
£
(@]
5.00E-09 -
0.00E+00 T T T T

270 280 290 300 310 320
Temperature (K)
Fundariciias ui cusiainauvie 1S TUIVYY

330

Charge self-diffusivity prediction

e semi-quantitative agreement with

experiment

e decomposition into structural and

vehicular components

e structural is 60-70% of total

e correct temperature dependence

e structural and vehicular

components are uncorrelated

(ARG, )+ (AFZ o )+ 2(AT AT )
2dr
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Bulk HCI Solution: Effect of High Acidity
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« Total charge diffusivity follows the same trend as experimental value but is a bit
steeper

« Vehicular component of the charge diffusion is almost constant irrespective of the
concentration

 Structural diffusion decreases with increases in HCI concentration and plays a major
role in determining the dependence of charge diffusion on the concentration
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« Experimental data for total value

« Two assumptions (validated by RMD) for structural and vehicular components
» Decline in diffusivity due to pH is in the structural component
« Structural and diffusive components remain uncorrelated
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Proton Transport in Nanotubes: Effect of Confinement
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atom extended
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Esai Selvan, M. et al.
Mol. Simul., 2010.
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Proton Transport in Nanotubes: Effect of Confinement
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Proton Transport in Nanotubes: Effect of Confinement
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Confinement dramatically reduces structural diffusion.
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Esai Selvan, M., Keffer, D.J., Cui, S., Paddison, S.J., 36(7-8), Molec.
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Esai Selvan, M., Calvo-Mufioz, E.M., Keffer, D.J., J. Phys.

Chem. B, dx.doi.org/10.1021/jp1115004 , 2011.

« Two assumptions (validated by RMD) for structural and vehicular components

» Decline in diffusivity due to confinement is in the structural component

» Structural and diffusive components remain uncorrelated
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e Acidity — characterized by concentration of H;O* in aqueous domain

(exponential fit of HCI data)

e Confinement — characterized by interfacial surface area

(exponential fit of carbon nanotube data)

e Connectivity — characterized by percolation theory
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Good agreement of
theory with experiment.

Theory uses only
structural information to
predict transport property.

Proton transport is well-
described by this simple
model.
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Conclusions

Quantum Mechanics calculations provide understanding of structure
of ground state and transition state for structural diffusion, activation
energy and rate constant

Reactive MD simulations provide molecular-level understanding of
coupling of reaction and diffusion in aqueous systems, carbon
nanotubes and proton exchange membranes, provides short time
mean-square-displacements (MSDs)

Confined Random Walk theory extends MSDs from MD and yield
water self-diffusivities in excellent agreement with expt.

An analytical model incorporating

e acidity (concentration of H;O* in aqueous domain)

e confinement (interfacial surface area per H,0)

e connectivity (percolation theory based on H,O transport)

is capable of quantitatively capturing the self-diffusivity of both water
and charge as a function of water content
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