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I.  Adsorption Isotherms 
 
I.A.  Single-Component Langmuir Isotherm (simplest model): 
 
Consider adsorption as a kind of elementary reaction: A + S AS 
 
Adsorption is the forward reaction.  The rate of adsorption per unit volume of reactor is given by  
 
   1AaSAaa kkr   

 
  dd kr  

 
where  is the fractional occupancy of adsorption sites by component A, S is the fraction of 
empty sites and 1 S . 

 At equilibrium da rr   

 
   1Aad kk  

 
   1AK  
 

where the equilibrium coefficient, 
d

a

k

k
K  .  Solving for , you arrive at the Langmuir Isotherm 

for a single component: 
 

 
A

A

K

K





1

          (1) 

 
I.B.  Binary Langmuir Isotherm (simplest model): 
 
  BAAaASAaAaA kkr  1,,,  

 
 AdAdA kr  ,,  

 
at equilibrium dAaA rr ,,   
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  BAAaAAdA kk  1,,  

 
We can write this as 
 
  BAAAA K  1  for A       (2.A) 
 

where 
Ad

Aa
A k

k
K

,

, . 

 
We can repeat the analogous derivation for component B 
 
  BABBB K  1  for B       (2.B) 
 

where 
Bd

Ba
B k

k
K

,

, . 

 
We have two equations in (1.A) and (1.B) and we have two unknowns.  Solving simultaneously, 
yields 
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    (3.A) 
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



1

        (3.B) 

 
I.C.  For n-component Langmuir isotherm: 
 
Based on the pattern of the adsorption isotherm in the single-component and two-component 
case, we can use inductive reasoning to arrive at the expression for the n-component system: 
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





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cN

j
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K

K

1

1

         (4) 

 
I.D.  assumptions of Langmuir isotherm 
 1.  energetically homogeneous surface 
 2.  no adsorbate-adsorbate (lateral) interactions – no phase transitions 
 3.  only one adsorbate per adsorption site 
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II.  Material Balances 
 
II.A.  Parameter Definitions 
 
We have a packed bed.  The void fraction is the volume fraction of the reactor that is not 
occupied by the solid particles. 
 
  void fraction    [dimensionless] 
 
These particles are defined by several parameters.  Let us for the time being assume spherical 
particles.  Then the following parameters are relevant. 
 
 DP pellet diameter    [length] 
 
 S site density on surface of pellet  [sites/area] 
 
These parameters must be known. 
 
Given these parameters, the surface area per particle and the volume per particle are  
 

 2
Pp DA   

 

 3

6 Pp DV


  

 
and the ratio of surface area to volume is  
 

 
Pp

p

DV

A 6
  

 
The number of adsorption sites per particle is 
 
 sps AN   

 
The number of particles per volume of reactor is  
 

 
 

P
P V




1
 

 
The density of sites per volume of reactor is thus 
 

    
P

s
P

p
sPSR DV

A
N




1
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II.B.  “Lever-Rule” Material Balance between adsorbed and bulk phases (1 component) 
 
Consider a given differential volume element of the reactor containing a single component.  
Within this volume, we have void fraction, , and fractional occupancy, A, and bulk density, 
b,A.  The lowercase b stands for bulk and the uppercase A stands for component A.  The volume 
of the element is Vt, where the t stands for total.  The total mass of A in the differential volume 
element is 
 
 AbAaAt MMM ,,,           (5) 

 
We can define the total density of component A in the system to be 
 

 
t

At
At V

M ,
,            (6) 

 
Let’s make it clear that this is the total mass of A per total volume. 
We can define the bulk density of component A to be 
 

 
b

Ab
Ab V

M ,
,            (7) 

 
Let’s make this clear that this is the mass of A in the bulk phase per bulk volume.  We see that 
the bulk volume is related to the total volume through the void fraction 
 

 
t

b

V

V
           (8) 

 
We can define the adsorbed density of A as being the mass of A per total volume. 
 

 ARA
t

Aa
Aa m

V

M
 ,

,         (9) 

 
where mA is the molecular weight of component A. 
 
We divide equation (5) by the total volume, tV . 

 

 
t

Ab

t

Aa

t

At

V

M

V

M

V

M ,,,   

 
We substitute the densities in equations (6), (7) and (9) to obtain 
 
  AbAaAt ,,,          (10) 
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This equation can also be written as  
 

 
 




 AbA
P

sAAbARAAt m
D

m ,,,
1

6       

 
This is a “lever-rule” type of mass balance that relates the fractional occupancy of A in the 
adsorbed phase to the bulk density of A through the total density of A in the system. 
 
II.C.  Differential Material Balances  (1 component) 
 
We perform a differential balance on the total mass of A. 
 
 generationoutinonaccumulati   
 
The accumulation term is given by 
 

 
t

V
t

M
onaccumulati At

t
At









 ,,  

 
where we used equation (6) and assumed the volume was constant in time. 
The total volume of the differential element is the differential width of the element multiplied by 
the cross-sectional area, xt zAV  . 

A can only enter and leave the differential volume element via convection.  (There is no 
diffusion since it is single component.)  Adsorption and desorption moves the material from the 
bulk phase to the adsorbed phase, but it does not move it out of the differential volume element.  
The convective terms accounts for fluid flowing in the bulk phase.  There is no convection of the 
particles; they are assumed to be fixed.  As a result the density that appears in the convection 
term must be the bulk density.  Moreover, the convection occurs not through the entire cross-
sectional area, but only through that portion of the cross-sectional area that is open to flow, fxA , , 

where xfx AA ,  

 

    
zzzfxAbzzfxAb vAvAoutin


 ,,,,  

 
There is no generation of the total mass of A.  If we put all the terms into the balance, we have 
 

    
zzzfxAbzzfxAb

At
t vAvA

t
V







,,,,

,  

 
This can also be written as  
 

    
zzzxAbzzxAb

At
x vAvA

t
zA







 ,,

,  
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For constant cross-sectional area, we can divide by the volume and take the limit as z goes to 
zero, obtaining,  
 

  zAb
At v

zt









,

,          (11) 

 
This total mass balance on A is a little curious because in the accumulation term we have the 
total density and in the convection term, we have the bulk density.  Additionally, the convection 
term has the void fraction in it. 
 
 We now proceed to derive the balance on the mass of A in the bulk phase. 
 
 generationoutinonaccumulati   
 
The accumulation term is given by 
 

 
t

V
t

M
onaccumulati Ab

b
Ab









 ,,  

 
where we used equation (7) and assumed the volume was constant in time.  Note that this time in 
the accumulation term, we have had to use the bulk volume.  Again, A can only enter and leave 
the differential volume element via convection.  The in and out terms are therefore unchanged. 
 

    
zzzfxAbzzfxAb vAvAoutin


 ,,,,  

 
A in the bulk phase is generated by desorption and consumed by adsorption.  In Section I, we 
have assumed that the reaction rates are given per volume of the reactor, so the generation term 
is 
 
   tAdesAads Vrrgeneration ,,   

 
If we put all the terms into the balance, we have 
 

       tAdesAadszzzfxAbzzfxAb
Ab

b VrrvAvA
t

V ,,,,,,
, 






 

 
This can also be written as  
 

       tAdesAadszzzxAbzzxAb
Ab

t VrrvAvA
t

V ,,,,
, 







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For constant cross-sectional area, we can divide by the volume and take the limit as z goes to 
zero, obtaining,  
 

    AdesAadszAb
Ab rrv

zt ,,,
, 1












      (12) 

 
This equation provides the evolution of the bulk density of component A.  It can also be written 
as 
 

     AAdesAAbAadszAb
Ab kkv

zt












,,,,

, 1
1

     

 
 We now proceed to derive the balance on the mass of A in the adsorbed phase. 
 
The accumulation term is given by 
 

 
t

mV
t

M
onaccumulati A

ARt
Aa








 ,  

 
where we used equation (9) and assumed the volume was constant in time.  There is no 
convection of the adsorbed phase, thus no in and out terms.  A in the bulk phase is generated by 
desorption and consumed by adsorption.  In Section I, we have assumed that the reaction rates 
are given per volume of the reactor, so the generation term is 
 
   tAdesAads Vrrgeneration ,,   

 
If we put all the terms into the balance, we have 
 

   tAdesAads
A

ARt Vrr
t

mV ,, 



  

 
This can also be written as  
 

  AdesAads
AR

A rr
mt ,,
1








        (13) 

 
This equation provides the evolution of the adsorbed fractional occupancy of component A.  It 
can also be written as 
 

   AAdesAAbAads
AR

A kk
mt








,,, 1
1

 

 
So, if we collect the relevant evolution equations we have: 
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  zAb
At v

zt









,

,        total A  (14.t) 

 

     AAdesAAbAadszAb
Ab kkv

zt












,,,,

, 1
1

  bulk A  (14.b) 

 

   AAdesAAbAads
AR

A kk
mt








,,, 1
1

    adsorbed A (14.a) 

 
In order to solve this system of equations, you require the parameters, Aadsk , , Adesk , , , R , and 

the molecular weight Am .  You also either need to be given the velocity, zv , or add a momentum 
balance to this set of equations to solve for it. 
 
 vs superficial velocity   [length/time] 
 
 v true velocity    [length/time] 
 

 


 sv
v  

 
II.D.  Thermodynamic Equilibrium  (1 component) 
 
What happens if we don’t know the adsorption rate constants?  We can assume adsorption is fast 
and that the system is at thermodynamic equilibrium.  In this case, we can use the adsorption 
isotherm to relate the fractional occupancy to the bulk density.  For example, we can use the 
Langmuir isotherm. 
 

 
Ab

Ab
A K

K

,

,

1 


          (1) 

 
This requires that we know the equilibrium coefficient, which is much easier to estimate than the 
adsorption rate constants, because it can be estimated from physical chemistry.  We also have the 
lever rule mass balance from equation (10). 
 

 
 




 AbA
P

sAAbARAAt m
D

m ,,,
1

6       

 
If we differentiate both of these equations we have, 
 

   tK

K

K

K

t
Ab

Ab

Ab

Ab

A


























 ,

2
,

,
2

, 11
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tt

m
t

AbA
AR

At












 ,,       

 
We can rearrange these equations as 
 

 

 
t

K

K

K

K
m

t
At

Ab

Ab

Ab
AR

Ab





























 ,

2
,

,
2

,

,

11

1
      

 

   tK

K

K

K

t
Ab

Ab

Ab

Ab

A


























 ,

2
,

,
2

, 11
    

 
Analogous equations can be written for spatial derivatives. 
 

 

 
z

K

K

K

K
m

z
At

Ab

Ab

Ab
AR

Ab





























 ,

2
,

,
2

,

,

11

1
      

 

   zK

K

K

K

z
Ab

Ab

Ab

Ab

A


























 ,

2
,

,
2

, 11
    

 
So that, when we couple these equations to equation (11), the total mass balance, we have 
 

  zAb
At v

zt









,

,          (15.t) 

 

 

 
t

K

K

K

K
m

t
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Ab

Ab

Ab
AR

Ab





























 ,

2
,

,
2

,

,
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1
     (15.b) 

 

   tK

K

K

K

t
Ab

Ab

Ab
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A


























 ,

2
,

,
2

, 11
      (15.a) 

 
So the solution procedure is as follows.  Given At , , solve the following set of 2 coupled 

algebraic equations (the isotherm and lever rule) 
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Ab

Ab
A K

K

,

,

1 


          (1) 

 
  AbARAAt m ,,       

 
for A  and Ab, .  Once you have A  and Ab, , you can solve all of the spatial derivatives that 

appear in the evolution equations.  Once you have the spatial derivatives, you can evaluate 
equation (15) for all of the time derivatives. 
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III. Multicomponent Systems 
 
We consider a system with Nc components.  
 
III.A.  Thermodynamic Constraints 
 
As noted above, if the adsorptive system is at thermodynamic equilibrium, there is a 
thermodynamic constraint for each component.  If we use the Langmuir isotherm, the constraint 
is 
 

 









cN

j
ibi

ibi
i

K

K

1
,

,

1

         (III.1) 

 
There are Nc of these constraints. 
 
III.B.  “Lever-Rule” Constraints 
 
For each component, i, we can write 
 
 ibiait MMM ,,,      

 
We have the following definitions 
 

 
t

it
it V

M ,
,    

b

ib
ib V

M ,
,    iRi

t

ia
ia m

V

M
 ,

,   

 
This leads to the following constraints. 
 
  ibiait ,,,         

 

 
 




 ibi
P

siibiRiit m
D

m ,,,
1

6      (III.2) 

 
There are Nc of these constraints. 
 
III.C.  “Sum of the Mass Fractions is Unity” Constraints 
 

 1
1

, 




cN

i
iw   for all phases  

 
If we multiply this by the phase density we have, 
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 


 
cN

i
i

1
,   for all phases      (III.3) 

 
There are 3 of these constraints for the bulk, adsorbed and total phases.  For the total and bulk 
phases, we have respectively 
 

 t

N

i
it

c


1

,   

 

 b

N

i
ib

c


1

,   

 
For the adsorbed phase we have 
 

 a

N

i
ia

c


1

,   

 
which can be shown to be equivalent to 
 

 S

N

i
i

c




1
1

  

 
III.D.  Degree of Freedom Analysis 
 
For a system with Nc components, we have  13 cN  variables and 2Nc+3 constraints.  

Therefore, we have Nc independent unkowns. 
 
In the binary system, we have For a system with Nc=2 components, we have  13 cN =9 

variables and 2Nc+3=7 constraints.  Therefore, we have Nc=2 independent unkowns.  The 9 
variables are BbBaBtAbAaAtbat ,,,,,, ,,,,,,,,  .  The 7 constraints are 2 isotherms, 2 lever 

rules and 3 sums of the mass fractions.  The 2 independent unknowns can be chosen carefully 
from the full set of 9 unknowns, for example:  Att ,, . 

 
III.D.  Differential Material Balances 
 
For the total density in all phases,  
 

  zb
t v

zt









         (III.4) 

 
For the total density in the bulk phase,  
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    











 cN

i
idesiadszb

b rrv
zt 1

,,
1

      (III.5) 

 
For the total density in the adsorbed phase,  
 

  




 cN

i
idesiads

a rr
t 1

,,         (III.6) 

 
For the total density of component i in all phases,  
 

    











ibzib

it j
z

v
zt ,,

,   for all i     (III.7) 

 
where ibj ,  is the diffusive mass flux of component i relative to the center of mass velocity. 

For the total density in the bulk phase,  
 

      idesiadsibzib
ib rrj

z
v

zt ,,,,
, 1
















  for all i   (III.8) 

 
For the total density in the adsorbed phase,  
 

 idesiads
ia rr

t ,,
, 




      for all i   (III.9) 

 
 
III.E.  Thermodynamic Equilibrium  (multicomponent) 
 
If we want the time dependence of the bulk concentrations and surface converages without 
knowing the rate laws, then we must differentiate our constraints representing thermodynamic 
equilibrium and conservation of mass. 
 

 









cN

j
ibi

ibi
i

K

K

1
,

,

1

         (III.1) 

 
  ibiRiit m ,,           (III.2) 

 
Differentiation of the mass balance yields 
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









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





         

 
Differentiation of the adsorption isotherm yields 
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In the working of the problem, we will know the 
t

it



 ,
, so we manipulate the mass balance to 

solve for 
t

ib


 ,
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Substitution of this expression into the differentiated adsorption isotherm yields 
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
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





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This is a system of linear algebraic equations that can be solved for the time dependence of the 
fractional occupancy. 
 Clearly, it may be simpler to just solve for the evolution of the total densities of each 
component using an ODE solver and use the Newton-Raphson method at each step to solve the 
thermodynamic and mass balance constraints.  The alternative, generating the ODEs for solution 
of the bulk concentration and fractional occupancies may be more trouble than it is worth. 
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III. Reactive Systems 
 
III.A.  Adsorption rate constants known (unlikely) 
 Consider a batch reactor with a heterogeneous reactive system in which A and B adsorb 
reversibly and A is irreversibly converted to B in a surface reaction.  Five reactions and five 
elementary rate laws can be written.   
 
 adsorption of A: ab ASA    SACkr 11   

 
 desorption of A: SAA ba    Akr 22   

 
 surface rxn of A: aa BA    Akr 33   

 
 adsorption of B: ab BSB    SBCkr 44   

 
 desorption of B: SBB ba    Bkr 55   

 
As noted above, it is unlikely that we will know the four rate constants associated with 
adsorption.  However, in the case that we did know them, we could simply generalize our 
balances for each component.  We ignore all flow terms since we are in a batch reactor.   
 
 

 















rn

j
jij

ib r
t

C

1
,

, 1 


  bulk components 

 

 










 



rn

j
jij

R

i r
t 1

,

1 



  adsorbed components 

 
These reactions include the adsorption and desorption reactions. 
These equations can be straightforwardly solved using a numerical technique. 
Examples 1 and 2 in the following lecture module solve this problem. 
 
III.B.  Adsorption rate constants unknown (much more likely) 
 
 If the rate constants for adsorption are unknown, we rely on thermodynamic constraints 
and the conversation of mass to determine all of the bulk concentrations and the fractional 
occupancies.  We write balances only on the total (bulk + adsorbed) amount of each component.  
Adsorption and desorption do not change the total amount of a component and are not included.  
Only reactions which convert one component to another are included (thus the asterisk on the 
summation). 
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 





 rn

j
jij

it r
t

C

1
,

*,    total amount of components 

 
In order to solve this numerically, the system of algebraic equations represented by the 
hermodynamic constraints and the conversation of mass must be sovled at each time step to yield 
the current bulk concentrations and the fractional occupancies.   From this we know all the 
interesting system properties as a function of time.   
 Example 3 in the following lecture module solves this problem. 
 
 
 


