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I. The integral method for k,, and the activation energy, E,, with rate law known.

Earlier in the semester, we showed that, if one knew the rate law, one could record
concentration vs time data in a batch reactor operated under isothermal conditions for several
different temperatures, and from that data, extract the rate constant prefactor, k,, and the
activation energy, E.,.

As a review, the key steps in this process are listed below. We consider a homogeneous
reaction with the following stoichiometry,

v ,A+0gB > 0v:.C+ov,D 1)

taking place in an isothermal, jacketed, batch reactor. The rate of reaction, r(t), is of the
elementary form:

r(t) = kC,"/C," )

where C, is the concentration of species A in moles/liter, C is the concentration of species B
in moles/liter and k is the rate constant, defined as

1



,Ea

k=ker (3)

where k, is the reaction rate prefactor constant, E, is the activation energy, R is the gas

constant, 8.314 J/mol/K, and T is the temperature in K.
The mole balance on A in a batch reactor is simply, accumulation = generation, or

dc,
dt

—E,
=0, (t) = 0,C,"'Cq "k e T (@)

In order to integrate this ODE, we must eliminate the concentration of B from the equation.
The mole balance on B in a batch reactor is

dC, A
=, r(t) =2 —A 5
GO = g (5)

Cg(t) L Ca(t)
[dcg === fdc, (6)
Calty) Ua c,lt,)

Integration yields

Ca()~Colt,) =~ = [Ca ()~ Clt)] ™

A

Isolating the concentration of B yields

Co(t) = Cy (t,) +—2[C (1) — CA(t,)] ®)

0,
We substitute the expression for C; into equation the mole balance for A yields

|og| -E,
dgtA = UACAUA{CB(tO) +22[C, (1) —CA(to)]} koe FT ©

Up

This equation can be integrated. For elementary rate laws, it can be integrated analytically.



dc, &

ol = ke RT dt (10)
on v
0,C, {CBVO +%c,-C,, ]}
U
Integrate over time from t, to t.
Ca t —E,
ac, = [ke (11)

Cao t

UACA‘UA‘ {CB,O + Zi [CA —Cao ]}
A

The integral on the right hand side of equation is trivial to evaluate under isothermal conditions.

t -E, -E,
.[ko exp R dt=k.eR" (t—t ) (12)
t

The integral on the left hand side is somewhat trickier. Let’s massage it into shape. Let

a= Z—B ,b=C,, _Z_BCA,O , N=|v,|, m=[vs|, x=C,. With these substitutions we have
A A

A dc, S A ()

b

Cao [val Ug
v,C,\™ {CB,O + :[CA _CA,o
A

1% dx
| & 14
o njx”(ax+b)m 9

Xo

Regardless of the particular form of the left-hand-side integral, the analytical function can be
obtained. Check the Appendix for some examples of the analytical evaluation of this integral for
realistic values of n and m.

After the integration, equation (11) becomes

_Ea

In,m (CA) - In,m (CA,o) = koeﬁ(t _to) (15)

We linearize this so that we can perform a linear least squares regression to obtain k, and E, .
The linearization involves taking the log of both sides.



-Ea
In[l,0(Ca) =100 (Cao)]= In{koe (-t )} (16)
On the RHS, the log of a product is the sum of the logs.
_Ea

IN[l,.0(Cy) = 1, (Cpo)]= Infk, ]+ In{e”} +Inft—t,] (17)

The natural log and the exponential are inverse operations.

I0,0(C) = Lo (Co)]=Inll ]+ =2+ Inft -, (18)

If we move In[t —to] to the LHS, and use the fact that the difference of logs is the log of the
quotient, we have,

L. (C)-1,,(C -
In n,m( A) n,m( A,o) :In[k0]+ Ea (19)
t—t, RT
lL.(Co-1,,.(C
Let yzln{ nn A)t t“’m( A’°)}, x:—%, m=E,, b=Ink,]. With these substitutions,

we see that our equation is in the form
y=mx+b (20)

We can perform a linear least-squares regression to obtain the parameters of best fit for the slope
and the intercept. From these we can obtain k, and E,. Since x is a function of temperature,

we need data from several different temperatures. (Two data points is the minimum required to
fit our two-parameter model.)

Example 1.

Consider the case of an isomerization reaction where A - B. Equation 11 is

_Ea

Ca t
dC, = ket (11)
tD

UACA‘UA‘ {CB,O + Zi [CA —Cho ]}
A

CA‘O

which when v, is zero, simplifies to



_I%:jkeRTdt (21)

Integration yields

_ |n[§A j: e ™ (t-t,) (22)

A0

Linearization and simplification yields

C
In( CA]OJ E
In| ——22 |=In[k_ |+—2 23
t—t, .] RT (23)

(As a reminder, we know the analytical solution to this problem,

-E

ﬁﬁ—gﬂ (22)

C.=Cy,, exp{— k.e

Consider a case where k, = 0.01 5™, Eq = 2000 J/mol and Ca, = 10.0 mol/liter. If we run the
reactor at two temperatures, 300 K and 400 K, and take only one measurement at a time of 60 s,
then we have the following data, assuming perfect adherence to the model.

perfect model data

T (K) time (s) k CA
300 60 0.004485 7.640696658
400 60 0.00548 7.197669005

Of course a regression of this data, will yield exactly the correct values of k, and E..

regression of perfect model data
T X y
300 -0.00040093 -5.40703
400 -0.0003007 -5.20657
slope 2000 -4.60517 intercept

The exp of the intercept yields k, = 0.01 s™.

If we introduce up to 1% uncertainty into the measurements of the concentration, we have for
example



model data with 1% uncertainty

T(K) time(s) k
300 60
400 60

CA

0.004484938 7.701162
0.005480464 7.213837

A regression of this data yields

regression of 1% uncertainty data

T
300
400

slope

ko =

Ea error

ko error

So k, =0.0106 s, E, = 2228 J/mol for this particular random number used in the calculation,

X

-0.00040093

-0.0003007
2228.299215
0.010637518
0.114149608
0.063751793

Y
-5.436760456

-5.213412367
-4.5433681

with errors of 6.3% and 11.4% respectively.

If we introduce up to 10% uncertainty into the measurements of the concentration, we have for

example

model data with 10% uncertainty

T(K) time(s) k
300 60
400 60

CA
7.29074
7.599657

0.004485
0.00548

A regression of this data yields

regression of 10% uncertainty data

T

300
400

slope
ko =

Ea error
ko error

So k, = 0.0030 s*, E,= -1404 J/mol for this particular random number used in the calculation,

X

Y
-0.0004

-0.0003
-1404.67
0.002999
-1.70233
-0.70014

-5.24642
-5.38721

-5.80959 intercept

with errors of -70% and -170% respectively.

intercept



The point of this exercise is to illustrate that relatively small uncertainties in the concentrations
can lead to huge errors in the kinetic parameters. How do you fix this? More data. Either you
run the reactor at more temperatures or you collect data at more points at each temperature (or

both).

Here we repeat the same example with one point at four temperatures.

If we introduce up to 1% uncertainty into the measurements of the concentration, we have for
example

model data with 1% uncertainty

T(K) time(s) k CA
300 60 0.004485 7.665222
300 60 0.004485 7.521488
300 60 0.004485 7.361643
400 60 0.00548 7.267751

A regression of this data yields

regression of 1% uncertainty data
T X y
300 -0.0004  -5.41901
333 -0.00036 -5.35024
367 -0.00033  -5.27753
400 -0.0003 -5.23648
slope 1858.737  -4.67464 intercept
ko = 0.009329
Ea error -0.07063
ko error -0.06711

So ko, = 0.0093 s, E, = 1858 J/mol for this particular random number used in the calculation,
with errors of 6.7% and 7.1% respectively.

If we introduce up to 10% uncertainty into the measurements of the concentration, we have for
example

model data with 10% uncertainty

T
(K) time(s) k CA

300 60 0.004485 7.141118
300 60 0.004485 6.925675
300 60 0.004485 7.1172
400 60 0.00548 6.804351



A regression of this data yields

regression of 10% uncertainty data

T X y
300 -0.0004 -5.18286
333 -0.00036 -5.09579
367 -0.00033 -5.17295
400 -0.0003  -5.0488

slope 944.2857 -4.79683 intercept
ko = 0.008256
Ea error -0.52786
ko error -0.17441

So ko, = 0.00083 s, E, = 944 J/mol for this particular random number used in the calculation,
with errors of -17% and -52% respectively.

The Arrhenius Plot is shown below

-5.05 °

5.1 e

-5.15

-5.2

> /

5.25 "

5.3 //.// ® perfectdata
/A// —perfectfit

-5.35 ® 1%uncertainty data
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5.4 :// ® 10%uncertainty data
—10% uncertainty fit
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-1/RT

We also show a picture of the concentration of A versus reactor temperature at 60 sec.
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I1. The integral method for k only (not k, and E, individually) with rate law known.

Suppose we only need to know k and not k, and E, individually, then we don’t need to run the
reactor at multiple temperatures, because we don’t need E,. We still have our mole balance for
A in the isothermal batch reactor.

—d;:tA = 0,r(t) = vkC,IC, (23)

We once again eliminate Cg in terms of Ca, which yields a mole balance like

dd% = UAkCAUA{CB (t,)+

\UB\
s lc, () - cm]} (24)

U

As before, we separate and integrate

Ca
dCA ‘UB‘ — k(t _to) (25)
e UACA‘UA‘ {CB,O + s [CA - CA,o ]}
Up
After the integration, we have
In,m (CA)_ In,m (CA,o) = k(t_to) (26)
where
17 dx
b == ) 27
"M p J x"(ax +b)" @7

Check the Appendix for some examples of the analytical evaluation of this integral for realistic
values of n.and m.

In this case, the equation is already linear in the unknown, k. So, if we identify
y=1,,(Ca)=1,,(Cho)=k(t-t,), x=(t—t,), and m=k, then it is easy to see that our

equation is of the form y = mx+b where b = 0. Thus the slope of the curve is the rate constant.
For this problem, we require only one run of the reactor with multiple measurements of
concentration as a function of time.

Example 2.

Consider the same first order reaction, A > B, worked in the previous example with k, = 0.01 s
! Ea= 2000 J/mol and Ca, = 10.0 mol/liter.
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The integrated mole balance was derived above,

(
In
C

A0

A

]:ka—g)

(28)

If we run the reactor at only one temperature, 300 K, and measure at several times we have the
following data for a perfect model, data with 1% uncertainty and data with 10% uncertainty.

perfect model data

data with 1%
uncertainty

data with 10%
uncertainty

time (s) CA CA CA

50 7.991177889 8.044038 8.721793
100 6.385892406 6.328766 6.217796
150 5.103080219 5.148634 5.478777
200 4.077962182 4.11007 3.684187
250 3.258772122 3.273692 3.306552
300 2.604142773 2.627322 2.703003
350 2.081016814 2.076428 1.960632
400 1.662977555 1.656794 1.721018
450 1.328914947 1.329199 1.277423
500 1.061959574 1.060793 1.066324

The data can be manipulated in sets of x and y upon which regression can be performed.

data with 1% data with 10%
perfect model data uncertainty uncertainty
X y y y

50 0.224247 0.217654 0.13676
100 0.448494 0.45748 0.47517
150 0.672741 0.663854 0.601703
200 0.896988 0.889145 0.998535
250 1.121235 1.116667 1.106679
300 1.345482 1.33662 1.308222
350 1.569728 1.571936 1.629318
400 1.793975 1.797701 1.759669
450 2.018222 2.018009 2.05774
500 2.242469 2.243569 2.238368

The regressions on these three data sets yields.

11




perfect model data

data with 1%
uncertainty

data with 10%
uncertainty

k (1/s)

0.004484938

0.004496

0.004591

k error

0.0

0.25%

2.4%

We see a couple things in this example. First, with ten data points, the error in the rate constant
is smaller. The error in the rate constant is smaller than the error associated with each individual
measurement of the concentration. Second, we see that with data from only one temperature,
we cannot simultaneously compute k, and E,, just their combination in k. Plots of the fits are
shown below. In the first figure, we show the actual curve from which the regression was taken.
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In the curve below, we plot concentration as a function of time.
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I11. The differential method for k only (not k, and E, individually) with rate law known.
Suppose we only need to know k and not k, and E, individually, then we don’t need to run the
reactor at multiple temperatures, because we don’t need E,. We still have our mole balance for
A in the isothermal batch reactor.

—d;:tA = 0,r(t) = vkC,IC, (23)

We either measured Cg or we eliminate Cg in terms of Ca,
D,
Co®)=Co(t,) +- *[Ca (0 - C,(t,)] (28)
A

If we have data, then we can use a centered finite-difference formula to estimate the rate. Once

we have the rate, we simply assign values of y = d;E[A , X = UACA‘“’*‘CB‘UB‘ ,and m=k. Thisis of

the form y = mx+b with b = 0. We directly regress for the rate constant. Again, since we aren’t
looking for E;, individually, we only need a run at one temperature. We can use the following
centered-finite difference formula for all points in the interior of the data set.

dCA| _ CA(tiJrl)_CA(ti—l) (29.a)

We either ignore the first point and last point or we use the forward and backward finite
difference formulae respectively for them,

dCA _ CA(ti+l)_ CA(ti) (29-b)
dt t t,—t
dCA _ CA(ti )_ CA(ti—l) (29.¢)
dt t, G-ty
Example 3.

Consider the same first order reaction, A = B, worked in the previous example with k, = 0.01 s’

! Ea= 2000 J/mol and Ca, = 10.0 mol/liter. In this case y = dg’;’* and x=-C,.

If we run the reactor at only one temperature, 300 K, and measure at several times we have the
following data for a perfect model, data with 1% uncertainty and data with 10% uncertainty.

14



data with 1% data with 10%
perfect model data uncertainty uncertainty
time (s) CA CA CA

50 7.991177889 7.994621 8.360794
100 6.385892406 6.371816 6.076995
150 5.103080219 5.115098 5.319733
200 4.077962182 4.041021 4.411273
250 3.258772122 3.244587 3.338548
300 2.604142773 2.581941 2.593858
350 2.081016814 2.061444 1.881243
400 1.662977555 1.65551 1.812195
450 1.328914947 1.324587 1.28708
500 1.061959574 1.065157 1.005825

The data can be manipulated in sets of x and y upon which regression can be performed.

perfect model data data with 1% uncertainty data with 10% uncertainty
X y X y X y
-7.991177889 -0.03211 -7.99462 -0.03246 -8.36079 -0.04568
-6.385892406 -0.02888 -6.37182 -0.0288 -6.07699 -0.03041
-5.103080219 -0.02308 -5.1151 -0.02331 -5.31973 -0.01666
-4.077962182 -0.01844 -4.04102 -0.01871 -4.41127 -0.01981
-3.258772122 -0.01474 -3.24459 -0.01459 -3.33855 -0.01817
-2.604142773 -0.01178 -2.58194 -0.01183 -2.59386 -0.01457
-2.081016814 -0.00941 -2.06144 -0.00926 -1.88124 -0.00782
-1.662977555 -0.00752 -1.65551 -0.00737 -1.81219 -0.00594
-1.328914947 -0.00601 -1.32459 -0.0059 -1.28708 -0.00806
-1.061959574 -0.00534 -1.06516 -0.00519 -1.00583 -0.00563
The regressions on these three data sets yields.
data with 1% data with 10%
perfect model data uncertainty uncertainty
k (1/s) 0.004124175 0.004180 0.005012
k error -8.0% -6.8% 11.8%

In this example, we see that the differential approach is inferior to the integral approach because
even in the perfect model case, there is error? Why? Because the centered finite-difference
formula is an approximation. It is an unnecessary approximation since we saw that if we used
the integral approach, we could fit the perfect model data without any error.

We show the plot that was used for the regression:
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We also show the plot with concentration as a function of time.
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IV. The differential method for ko, and the activation energy, E,, with rate law known.

Suppose we need both k, and E, individually, then we must run the isothermal reactor at multiple
temperatures. We still have our mole balance for A in the isothermal batch reactor.

dC Up vg Ea Ua Ug
d_tA = UAr(t) = UAkCA‘ ‘CB‘ | = UAko exp(_ EJCA ‘CB‘ | (23)

We either measured Cg or we eliminate Cg in terms of Ca,

Cy(t) =CB(to)+%[cA(t>—cA(to>] (28)

. . S : dC
As in the previous example, we use finite-difference formula to estimate the rate, th . We then

linearize the equation, as follows,

dC,
— =k eXp[_ Eaj >
0CL " Cy RT
dC,
dt E,
In| —— 0 [=In(k, )- (31)
V,C "Gy RT
dC,
We assign values of y =1In % , x=—i, m=E, and b=1In(k,). This is of the
v,C,C,"* RT

formy = mx+b. We directly regress for k, and E,.
Example 4.

Consider the same first order reaction, A > B, worked in the previous example with k, = 0.01 s

! Ea.= 2000 J/mol and Ca, = 10.0 mol/liter. In this case y = d;:tA and x=-C,.

If we run the reactor at several temperatures and measure at several times we have the following
data for a perfect model, data with 1% uncertainty and data with 10% uncertainty. In the same
table, the regression variables x and y are also given.
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raw data

regression variables

data
data with data with perfect with 1% data with
perfect 1% 10% model uncertai 10%

model data uncertainty | uncertainty data nty uncertainty

T(K) | time(s) | CA (mol/l) CA CA X y y %
300 50 | 7.991177889 8.055904 7.277559 -0.00040093 -5.51706 | -5.45295 -6.15217
300 100 | 6.385892406 6.330473 6.502918 -0.00040093 -5.39866 | -5.35825 -5.62265
300 150 | 5.103080219 5.074785 4.926715 -0.00040093 -5.39866 | -5.40395 -5.48287
300 200 | 4.077962182 4.047438 4.454689 -0.00040093 -5.39866 | -5.38949 -5.60424
300 250 | 3.258772122 3.227406 3.286399 -0.00040093 -5.39866 | -5.42546 -5.24434
300 300 | 2.604142773 2.626394 2.720364 -0.00040093 -5.39866 | -5.43206 -5.27295
300 350 | 2.081016814 2.078598 1.891275 -0.00040093 -5.39866 | -5.36704 -5.14574
300 400 | 1.662977555 1.656122 1.61885 -0.00040093 -5.39866 | -5.39214 -5.47532
300 450 | 1.328914947 1.324694 1.213155 -0.00040093 -5.39866 | -5.42453 -5.26898
300 500 | 1.061959574 1.072308 0.994214 -0.00040093 -5.29281 | -5.35863 -5.42517
333 50 | 7.844334579 7.905152 7.143151 | -0.000361198 -5.44651 | -5.42392 -5.48957
333 100 | 6.153358498 6.162138 5.668229 | -0.000361198 -5.31776 | -5.30179 -5.42655
333 150 | 4.826900285 4.834768 4.650127 | -0.000361198 -5.31776 | -5.30654 -5.72572
333 200 | 3.786382081 3.764551 4.151821 | -0.000361198 -5.31776 | -5.29751 -5.42958
333 250 | 2.970164789 2.950978 2.829581 | -0.000361198 -5.31776 | -5.31106 -4.93536
333 300 | 2.329896636 2.307741 2.117958 | -0.000361198 -5.31776 | -5.33048 -5.29985
333 350 | 1.827648874 1.833631 1.772226 | -0.000361198 -5.31776 -5.3365 -5.40262
333 400 | 1.433668926 1.425274 1.319609 | -0.000361198 -5.31776 -5.3008 -5.18072
333 450 | 1.124617873 1.122764 1.030085 | -0.000361198 -5.31776 -5.3266 -5.50867
333 500 | 0.882187887 0.879546 0.902269 | -0.000361198 -5.20372 | -5.19747 -5.86634
367 50 | 7.713611763 7.646181 7.374697 | -0.000327736 -5.38763 | -5.40399 -5.76371
367 100 | 5.949980644 5.926323 6.21707 | -0.000327736 -5.24944 | -5.26979 -5.38762
367 150 | 4.589584069 4.597285 4.531723 | -0.000327736 -5.24944 | -5.26766 -5.18808
367 200 | 3.540226966 3.556127 3.68713 | -0.000327736 -5.24944 -5.2642 -5.35751
367 250 | 2.730793637 2.757508 2.794113 | -0.000327736 -5.24944 | -5.24813 -5.23979
367 300 | 2.106428192 2.106405 2.205867 | -0.000327736 -5.24944 -5.2247 -5.13522
367 350 | 1.624816928 1.623846 1.495799 | -0.000327736 -5.24944 | -5.24293 -5.06887
367 400 | 1.253320697 1.248243 1.265082 | -0.000327736 -5.24944 | -5.23663 -5.37307
367 450 | 0.966762927 0.96001 0.908818 | -0.000327736 -5.24944 | -5.24945 -5.14087
367 500 | 0.745723389 0.744199 0.733189 | -0.000327736 -5.12804 | -5.14993 -5.34105
400 50 | 7.603144176 7.578544 8.107917 | -0.000300698 -5.34045 | -5.38146 -5.29361
400 100 | 5.780780136 5.835071 6.071383 | -0.000300698 -5.19408 | -5.21673 -4.98645
400 150 | 4.395210483 4.413003 3.96125 | -0.000300698 -5.19408 | -5.17301 -4.88975
400 200 | 3.341741898 3.334005 3.091223 | -0.000300698 -5.19408 | -5.19338 -5.31319
400 250 | 2.540774545 2.561554 2.43845 | -0.000300698 -5.19408 | -5.21655 -5.225
400 300 | 1.931787519 1.944108 1.779248 | -0.000300698 -5.19408 | -5.18582 -5.10379
400 350 | 1.468765902 1.473759 1.357788 | -0.000300698 -5.19408 | -5.19073 -5.38533
400 400 | 1.116723892 1.123525 1.156926 | -0.000300698 -5.19408 | -5.19337 -5.57661
400 450 | 0.849061275 0.849834 0.919849 | -0.000300698 -5.19408 | -5.18334 -5.24978
400 500 | 0.645553529 0.646835 0.674126 | -0.000300698 -5.06643 | -5.07091 -4.92123

The results of the regression are provided in the table below.
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perfect model data

data with 1%
uncertainty

data with 10%

uncertainty

Ea 2034.811048 1970.8816 2793.073
ko 0.010212205 0.0099783 0.012569
Ea error 1.74% -1.46% 39.65%
k error 2.12% -0.22% 25.69%

We observe again that using the differential method introduces error even when presented with
perfect model data. We also observe in this example, where we had 40 data points, (10
measurements at different times at each of the four temperatures) that the data with 1% variation
was well described. The errors in the data for the 10% variations are much larger. The plot on
which the regression was based is shown below.

-45
-5
-55
> . °
°
-6
) ® perfectdata
—perfectfit
e 10 i
65 1% uncertainty data
—1%uncertainty fit
® 10%uncertainty data
—10% uncertainty fit
-7 . . . -
-4.1E-04 -3.9E-04 -3.7E-04 -3.5E-04 -3.3E-04 -3.1E-04 -2.9E-04
x=-1/RT

The plot of concentration as a function of time, shown once for each temperature (four times for
each of the three data sets is also shown below) although now there is too much data to make
much sense of it.
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V. Determining the rate law — elementary rate laws via fitting the exponents

In the four sections described above, we assumed that we knew the rate law and we were
tasked with finding k or k, and E,. We used our knowledge of the rate law in the mole balance.
If we don’t know the rate law, our task is to find the rate law and the parameters simultaneously.

In general, the procedure is as follows. First, we postulate a rate law. Then we perform
some check against the data to determine if our guess was a good one. If it wasn’t we perform
postulate a different rate law until we find one that fits well or we give up. As illustrated above,
we need good data to do this kind of determination. We will split the examples up into
elementary rate laws and non-elementary rate laws.

If we assume the rate law is elementary, then we know in an isothermal batch reactor, the
mole balance is of the form:

dd% =v,r(t) =v,kC,"*C,"! (23)

The complication is now we do not know the stoichiometric coefficients. They are also
unknowns. If we use the differential method, then we can estimate the rate of loss of
concentration of A from the concentration data using the finite difference formulae. So, we
linearize the equation by taking the log.

In(— d;:tAJ = In(va[k)+]va|In(C,) + |vg| In(C,) (32)

where we rewrote v, = _|UA| since we know A is a reactant and its coefficient is negative.

Grouping the negative sign with the rate (also negative) allows us to take the log of a positive
number.
This equation is a multivariate linear equation of the form,

y=b+mx +m,X, (33)

where y = In(— aC,
dt

j, b=1In(vuk), m =|v,|, % =In(C,), m, =|vs|and x, =In(C,).

Multivariate linear regression is the same process as single variable linear regression except
applied to more variables. The equation is linear in the unknowns, m;, my and b.

Example 5.
We will work two examples here. A simple example first and a more complicated example

next. In the first example, we model a first order reaction, A = B in an isothermal batch reactor.
In this case, there is only reactant, so the mole balance becomes

In(— dC,
dt

J: In(v,k)+ .l In(C,) (34)
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The slope of this is the order of the reaction in A and the intercept will yield the rate constant.
Consider the same first order reaction, A = B, worked in the previous example with k, = 0.01 s
! E.= 2000 J/mol and Cao = 10.0 mol/liter. If we run the reactor at only one temperature, 300
K, and measure at several times we have the following data for a perfect model, data with 1%
uncertainty and data with 10% uncertainty.

perfect model data

data with 1%
uncertainty

data with 10%
uncertainty

time (s) CA CA CA

50 7.991177889 8.015368 7.635204
100 6.385892406 6.42855 6.037697
150 5.103080219 5.062454 5.196529
200 4.077962182 4.100368 3.757393
250 3.258772122 3.254426 3.315543
300 2.604142773 2.592243 2.419732
350 2.081016814 2.069532 1.892247
400 1.662977555 1.652325 1.768125
450 1.328914947 1.341064 1.296133
500 1.061959574 1.066879 1.136096

The data can be manipulated in sets of x and y upon which regression can be performed.

perfect model data data with 1% uncertainty data with 10% uncertainty
X y X y X y
2.078338169 -3.43872 2.0813607 -3.45029 2.03277 -3.44358
1.854091246 -3.54457 1.8607491 -3.52238 1.798023 -3.71372
1.629844322 -3.76882 1.6218514 -3.76008 1.647991 -3.78086
1.405597398 -3.99307 1.4110766 -4.01293 1.323725 -3.97337
1.181350475 -4.21731 1.1800159 -4.1943 1.198621 -4.31425
0.957103551 -4.44156 0.9525236 -4.43552 0.883657 -4.2522
0.732856627 -4.66581 0.7273224 -4.66713 0.637765 -5.03348
0.508609704 -4.89005 0.5021833 -4.92198 0.569919 -5.12249
0.28436278 -5.1143 0.2934632 -5.14055 0.259385 -5.06399
0.060115856 -5.2327 0.0647375 -5.20598 0.127598 -5.74437

The regressions on these three data sets yields.
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perfect model data

data with 1%
uncertainty

data with 10%
uncertainty

|VA| 0.945 0.948 1.107

|VA| error -5.5% -5.0% 10.7%
k (1/s) 0.00506 0.00501 0.00332

k error 12.9% 11.8% -25.9%

In all cases, the stoichiometric coefficient is close to unity. Therefore, we can confirm that this
reaction is first order in A. The rate constant is also reproduced relatively well.

We show the plot that was used for the regression:
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-3.5

In(-dC/dt)
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-4.5

® perfectdata

—perfectfit

-5.5
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® 10%uncertaintydata ||

—10% uncertainty fit

1.0

15

x=In(Cp)

2.0 25

We also show the plot with concentration as a function of time.
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Example 6.

Let’s also examine a case with more than one reactant, so we can perform the multivariate
regression. Consider the reaction A + B - C performed in an isothermal batch reactor. In
order to generate our perfect model data, we first solve the model analytically. From the
analytical solution we can randomize concentrations and generate data with varying degrees of
uncertainty, as we have done in the previous examples.

We begin with our mole balance for A in the isothermal batch reactor.

dc,
dt

=v,r(t) =v,kC,"*C " (23)

We once again eliminate Cg in terms of Ca, which yields a mole balance like

dc,
dt

\UB\
- uAkCAUA{CB (t,)+22[C, () - CA(tO)]} (24)
Up

As before, we separate and integrate

Ca

dc,

ENE k(t_to) (25)
o UACA‘UA‘ {CB,O + ZiB [CA —Cao ]}

A

After the integration, we have

24



In,m (CA) - In,m (CA,o) = k(t _to) (26)

where
1% dx
| = 27
nm nix”(ax+b)m @7)
where a="2 b=C, -22C,,, n=|v,), m=|vg|, x=C,. Inthisexamplen=1andm=1,
Up Ua
rodx 1 x Y 1 X 1 X,
=[] =i | =—ZIn £ ZIn
* gx(ax+b) b \ax+b) b lax+b) b {ax,+b (35)

b

st

b | x(ax, +b)

Evaluating the integral in terms of the variables of interest yields

1 CAO(CA+CBO _CAO)J
In| =2 , 00 =k(t -t (36)
CBO _CAo [CA(CA,O + CB,o _CA,O) ( )

This is the analytical solution for the concentration of A as a function of time. For our numerical
example, we specify k, = 0.01 liter/mol/s, E, = 2000 J/mol and Ca, = 2.0 mol/liter and Cg, = 3.0
mol/liter. We use this model to generate values of Ca and Cg as a function of time. (Actually,
it is easiest to pick values of Ca and then compute the corresponding values of Cg and time.)
Then we can use the differential method to estimate the rate of loss of A and multivariate
regression on the linearized expression.

In(— d;:tAJ = In(va[k)+]va[In(C,) + |vg| In(C,) (32)

We can use this equation to generate data. We show the perfect model data below.

perfect model data

T
(K)  time (s) k CA CB

300 3.87781077 0.004485 1.9 2.9
300 8.108839037 0.004485 1.8 2.8
300 12.74452575 0.004485 1.7 2.7
300 17.8470024 0.004485 1.6 2.6
300 23.49207604 0.004485 1.5 2.5
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300 29.7732942 0.004485 1.4 2.4

300 36.80758417 0.004485 1.3 2.3
300 44.74324378 0.004485 1.2 2.2
300 53.77154185 0.004485 11 2.1
300 64.14403992 0.004485 1 2

We use the centered finite difference formula to estimate dCA/dt.

regression of perfect model data
x1 X2 Y

0.641853886 1.064711 -3.70239262
0.587786665 1.029619 -3.79174229
0.530628251 0.993252  -3.88549045
0.470003629 0.955511 -3.98411576
0.405465108 0.916291 -4.08818327
0.336472237 0.875469 -4.19836729
0.262364264 0.832909 -4.31548274
0.182321557 0.788457  -4.44052887
0.09531018 0.741937 -4.57475202
-7.77156E-16 0.693147 -4.64174298
The regression yields
m, m; b
4.022410041 -0.81456 -7.45263508
abs(nuA) -0.814564271
abs(nuB) 4.022410041
k -0.000711928
abs(nuA) error -181.46%
abs(nuB) error 302.24%
k error -115.87%

The results should have both stoichiometric coefficients equal to unity. Thus this method
completely failed. It can be rigorously shown that the reason for the failure was very small error
introduced by the centered finite-difference formula. If the data itself has even small
uncertainties, the results are even worse. Therefore, the sensitivity of this method to small errors
in the rate renders it practically useless.
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V1. Determining the rate law — elementary rate laws via postulating the rate law

We have shown in the previous example that we cannot simply regress for the stoichiometric
coefficients based on available experimental data because small uncertainties result in huge
errors. The alternative is to guess the rate law and solve for the rate constant, determining which
model provides the best fit.

Example 7.

We examine the same problem given in example 6. Consider the reaction A+B - C
performed in an isothermal batch reactor. We begin with our mole balance for A in the
isothermal batch reactor.

—dgtA = 0,r(t) = vkC,IC, ™ (23)

This is linear with y = ddCtA , x=0,C,"c.*! and m=k.

We will assume values of v, and v, . Then we simply follow the procedure to regress the rate
constant, assuming the rate law is known.

Table of Measure of Fit on the Linear Regression

perfect model data

vg =0 vg =1 Vg =2
v, =1 0.996 0.997 0.983
vy, =2 0.994 0.991 0.976
model with 1% uncertainty

vg =0 vg =1 Vg =2
v, =1 0.960 0.965 0.962
v, =2 0.952 0.950 0.932
model with 10% uncertainty

vg =0 vg =1 Vg =2
v, =1 0.049 0.047 0.002
vy, =2 0.065 0.066 0.072

We see from these results that for the perfect model data and for the data with 1% uncertainty,
the best fit is with v, =1 and v; =1. When the data is bad, all the fits are bad.
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The regression and the plots for this result are shown below.

perfect model data

data with 1%
uncertainty

data with 10%
uncertainty
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VII. The integral method for AHR.

The rate law and rate constant parameters, k, and E,, can be determined from mass balances
independently of the heat of reaction as demonstrated in the examples above. Therefore, in this
section we assume that we already know the rate law and k, and E..

An adiabatic batch reactor is operated. We previously derived the energy balance for a
jacketed batch reactor

dT _ —AHegr
dt C.C

(37)

p,mix

Assuming we know the rate law, we can integrate and regress this equation for the unknown,
AH ., knowing only the concentrations of the reactions and the outlet temperature of the jacket

as a function of time. For this example, we assume the rate has an elementary form,

rt) = kCA\UA\CB\UB\ =k, exp(— RE_'T'jCAUACBUB (38)

We integrate from t, to t.

¢ —AH Kk, exp(— FEJCA“ACB“B

t
dT = dt (39)
E[ tJD- CTCp,mix
Pull the constants out of the integrals.
t
T-T, = A0 | exp(— EJCAUACBUBdt (40)
CrComix 1 RT

t
We can write thisasy = mx + b where y =T -T,, x=— K, '[exp(— EJCAUACBUBdt,
C,C RT

m=AH_, and b =0. Thus a linear regression will yield the heat of reaction as the slope. In

order to perform this linear regression, we must evaluate the two integrals for every data point.
This requires numerical integration.

p,mix t,

Let’s work example 8.

Example 8.

Example 8 is working the same problem as example 1. Consider the case of an isomerization
reaction where A - B. We already know the rate law. We also have already determined k, and
Ea. Inexample 1, k, = 0.01 s, E; = 2000 J/mol and Ca, = 10.0 mol/liter. The heat capacity of
A, B and the solvent are all 75.312 J/mol/K. There is 40.0 mol/liter of solvent in the reactor. We
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run the reactor one run under adiabatic conditions. and take many measurements as a function of
time. We generate the data using sysode.m.

function dydt = sysodeinput(x,y,nvec);

%

% one reaction in solvent, S

% A --> B

%

% sample usage:

% [y,x]=sysode(2,1000,0,10,[10,0,40,300]);

CA = y(1); % mol/liter
CB =y(2);
CS = y(3);

T=vy(@); % K

%

% stoichiometry
%

nuA = -1;
nuB = +1;
nuS = 0;

%
% rate law

o =0.01; % 1/sec
a = 2000; % J/mol
= 8.314; %J3/mol/K

UR = -250000.0; %J/mol

= ko*exp(-Ea/(R*T)); % liters/mole/sec
= k*CA; % mole/liter/sec

% pure component heat capacities

CVvA = 4.184*18.0; %J/mol/K
CvB = CvA; %J/mol/K
CvS = CvA; %J/mol/K

%
% mole fractions
%

CT = CA + CB + CS;
XA = CA/CT;
XxB = CB/CT;
XS = CS/CT;

%

% mixture heat capacity

%

Cvmix = XA*CVA + xXB*CvB + XS*CvS;
%

% mole and energy balances

%

dydt(1l) = nuA*r;
dydt(2) = nuB*r;
dydt(3) = nuS*r;
dydt(4) = -DUR*r/(CT*Cvmix);

We run the command:
» [y,x]=sysode(2,100,0,60,[10,0,40,300]);
The output data from the simulation therefore looks like:

time CA CB CS Temp
0.0000000e+000 1.0000000e+001 0.0000000e+000 4.0000000e+001 3.0000000e+002
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6.0000000e-001 9.7320229e+000 2.6797714e-001 4.0000000e+001 3.1779113e+002

1.2000000e+000 9.4673841e+000 5.3261587e-001 4.0000000e+001 3.3536062e+002
1.8000000e+000 9.2074904e+000 7.9250956e-001 4.0000000e+001 3.5261509e+002
2.4000000e+000 8.9534429e+000 1.0465571e+000 4.0000000e+001 3.6948143e+002
3.0000000e+000 8.7060690e+000 1.2939310e+000 4.0000000e+001 3.8590470e+002

5.7000000e+001 2.0231453e+000 7.9768547e+000 4.0000000e+001 8.2958723e+002
5.7600000e+001 2.0049300e+000 7.9950700e+000 4.0000000e+001 8.3079655e+002
5.8200000e+001 1.9870324e+000 8.0129676e+000 4.0000000e+001 8.3198478e+002
5.8800000e+001 1.9694443e+000 8.0305557e+000 4.0000000e+001 8.3315246e+002
5.9400000e+001 1.9521581e+000 8.0478419e+000 4.0000000e+001 8.3430011e+002
6.0000000e+001 1.9351660e+000 8.0648340e+000 4.0000000e+001 8.3542822e+002

We generate the regression variables, x and y. We use the trapezoidal rule to evaluate the
integral. We show only the first few rows of the table here. This data is for the perfect fit model.

RHS
time CA CB (& temp RHS integrand RHS area integral LHS
0.0000E+00 | 1.0000E+01 | 0.0000E+00 | 4.0000E+01 | 3.0000E+02 4.4849E+00 X y
-7.1535E-
6.0000E-01 | 9.9731E+00 | 2.6937E-02 | 4.0000E+01 | 3.0179E+02 4.4942E+00 | 2.6937E+00 06 | 1.7884E+00
-1.4322E-
1.2000E+00 | 9.9461E+00 | 5.3929E-02 | 4.0000E+01 | 3.0358E+02 4.5031E+00 | 2.6992E+00 05 | 3.5804E+00
-2.1504E-
1.8000E+00 | 9.9190E+00 | 8.0975E-02 | 4.0000E+01 | 3.0538E+02 4.5119E+00 | 2.7045E+00 05 | 5.3759E+00
-2.8699E-
2.4000E+00 | 9.8919E+00 | 1.0807E-01 | 4.0000E+01 | 3.0717E+02 4.5203E+00 | 2.7097E+00 05 | 7.1749E+00
-3.5909E-
3.0000E+00 | 9.8648E+00 | 1.3522E-01 | 4.0000E+01 | 3.0898E+02 4.5286E+00 | 2.7147E+00 05 | 8.9772E+00
-4.3131E-
3.6000E+00 | 9.8376E+00 | 1.6241E-01 | 4.0000E+01 | 3.1078E+02 4.5366E+00 | 2.7195E+00 05 | 1.0783E+01
The regression on this data yields the following slopes.
data with 1% data with 10%
perfect model data uncertainty uncertainty
AHg (J/mol) -250001 -250600 -253153

The value used to generate the data was -250,000 J/mol.

The following plots were generated for the linear regression.

31



250
® perfectdata
.J —perfectfit
200 ® 1%uncertainty data
o o
—1%uncertainty fit
® ® 10%uncertainty data
150 H
——10% uncertainty fit
®
° °
=
': 100
>
50
o
0 ® %
°
-50

-8.0E-04 -7.0E-04 -6.0E-04 -5.0E-04 -4.0E-04 -3.0E-04 -2.0E-04 -1.0E-04 0.0E+00
X

We also generated a plot of temperature as a function of time.
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VIIIl. The differential method for AHg.

It is also possible to use a differential method for determining AHg. We will work the same
problem as in the previous section. We write the energy balance.

dT _ —AHgr (37)
dt CTCp,mix
We estimate the temperature derivatives using centered-finite difference formulae. The equation
is of the form y =mx + b where y:d_T, x:_—r, m=AH., and b=0. Thus a linear
dt cTCp,mix

regression will yield the heat of reaction as the slope.

Example 9.
We use the same data as was generated for the previous section using the integral method.
The regressions yield the following results.

data with 1% data with 10%
perfect model data uncertainty uncertainty

AHg (J/mol) -250022 -251003 -345942

The regression plot for the perfect data is shown below.
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The same plot is shown again below for all three data sets. As can be seen the data with
uncertainty wreaks havoc on the slopes. The integral method is again superior here, even using a
numerical integration technique.

33



150

® perfectdata
°
o —perfectfit
100 ® ° ® 1%uncertainty data
e o ® ® ° 0 N
° ° P —1%uncertainty fit
®e ° ° ° ® 10%uncertainty data
50 ° o —eo e ]
o © ° o3 —10% uncertainty fit
[} Y [ J
= ® [
2 . ___° . 'w‘*‘ .y °
s 0 — o7 b
Il ° i [} ® o [ ] ° ®
> ° ® o o [ ] ®
° o® o P o ° .
°
° ® o0 ° °
-50 ° L)
o0 e ©
°
-100 oo ¢ .
°
-150 ‘

-1.5E-05 -1.4E-05 -1.4E-05 -1.3E-05 -1.3E-05 -1.2E-05 -1.2E-05 -1.1E-05 -1.1E-05 -1.0E-05

X

We also show a plot of reactor temperature vs. time.
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Appendix I. Table of Relevant Integrals

Examples of analytical evaluations of integrals of the form: I -

x"(ax+b)"

evaluated using the technique of partial fraction expansions.

n=1, m=1

n=2, m=1

n=3, m=1

n=1, m=2

n=2, m=2

n=3, m=1

n=1, m=3

n=2, m=3

n=3, m=3

. These can be

dx 1 ( X )
S
x"(ax+b)" b \ax+b
dx 1 a [ax+b)
Jﬁ=——+—zn
x"(ax+b)"  bx b
J- dx  2ax-b azln( X j
x"(ax+b)"  2b’x* b® lax+b
dx 1 1 ( X )
J. m= +—2|n
x"(ax+b)" b(ax+b) b*> (ax+b
dx -a 1 2a (ax+b]
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