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We proceed in our analysis of the PFR with the following assumptions.

Assumption 1: the internal energy is not a function of molar volume.
Assumption 2: The mixture is an ideal mixture.

Assumption 3: The heat capacity is constant.

Assumption 4: The reactor volume is constant.

In the hand-out titled, “Forms of the Microscopic Energy Balance”, we derived previously the
PFR energy balance,
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Assumption 5: The PFR is at steady state.
Assumption 6: The PFR has variation only in the axial dimension.

At steady state, the accumulation terms are 0. If we assume that there is variation in the axial
dimension only, then we have
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Assumption 7: We neglect heat conduction.

Assumption 8: We neglect viscous heating.

Assumption 9: The pipe is horizontal so that there is no effect of gravity.

Assumption 10: The fluid is incompressible so the change in kinetic energy is negligible.
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This can also be written on a molar basis as
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We now need to substitute in the mole balance for the PFR, which we derived earlier as
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so that the energy balance becomes
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We can rearrange this as
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This is the energy balance for the steady state PFR, given the assumptions above.

However in the interests of maintaining some continuity with Fogler, let’s also consider the
following additional analysis.
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so the reaction rate can be eliminated from the energy balance and written as
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We need to express every variable in terms of temperature, conversion and constants in order to
integrate.

All of the compositions can be written as

Ci = Ci,in + i(CA - CA,in)
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If we now substitute into our energy balance, we have
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Integrate. Both of the integrals have the form
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Equating the two terms
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Simplifying
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Compare this equation to Fogler, equation (8-29) on page 486. They are completely equivalent.
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